600 research outputs found

    Cooperative Authentication in Underwater Acoustic Sensor Networks

    Full text link
    With the growing use of underwater acoustic communications (UWAC) for both industrial and military operations, there is a need to ensure communication security. A particular challenge is represented by underwater acoustic networks (UWANs), which are often left unattended over long periods of time. Currently, due to physical and performance limitations, UWAC packets rarely include encryption, leaving the UWAN exposed to external attacks faking legitimate messages. In this paper, we propose a new algorithm for message authentication in a UWAN setting. We begin by observing that, due to the strong spatial dependency of the underwater acoustic channel, an attacker can attempt to mimic the channel associated with the legitimate transmitter only for a small set of receivers, typically just for a single one. Taking this into account, our scheme relies on trusted nodes that independently help a sink node in the authentication process. For each incoming packet, the sink fuses beliefs evaluated by the trusted nodes to reach an authentication decision. These beliefs are based on estimated statistical channel parameters, chosen to be the most sensitive to the transmitter-receiver displacement. Our simulation results show accurate identification of an attacker's packet. We also report results from a sea experiment demonstrating the effectiveness of our approach.Comment: Author version of paper accepted for publication in the IEEE Transactions on Wireless Communication

    Game Theory-Based Cooperation for Underwater Acoustic Sensor Networks: Taxonomy, Review, Research Challenges and Directions.

    Get PDF
    Exploring and monitoring the underwater world using underwater sensors is drawing a lot of attention these days. In this field cooperation between acoustic sensor nodes has been a critical problem due to the challenging features such as acoustic channel failure (sound signal), long propagation delay of acoustic signal, limited bandwidth and loss of connectivity. There are several proposed methods to improve cooperation between the nodes by incorporating information/game theory in the node's cooperation. However, there is a need to classify the existing works and demonstrate their performance in addressing the cooperation issue. In this paper, we have conducted a review to investigate various factors affecting cooperation in underwater acoustic sensor networks. We study various cooperation techniques used for underwater acoustic sensor networks from different perspectives, with a concentration on communication reliability, energy consumption, and security and present a taxonomy for underwater cooperation. Moreover, we further review how the game theory can be applied to make the nodes cooperate with each other. We further analyze different cooperative game methods, where their performance on different metrics is compared. Finally, open issues and future research direction in underwater acoustic sensor networks are highlighted

    Secure Cooperation of Autonomous Mobile Sensors Using an Underwater Acoustic Network

    Get PDF
    Methodologies and algorithms are presented for the secure cooperation of a team of autonomous mobile underwater sensors, connected through an acoustic communication network, within surveillance and patrolling applications. In particular, the work proposes a cooperative algorithm in which the mobile underwater sensors (installed on Autonomous Underwater Vehicles—AUVs) respond to simple local rules based on the available information to perform the mission and maintain the communication link with the network (behavioral approach). The algorithm is intrinsically robust: with loss of communication among the vehicles the coverage performance (i.e., the mission goal) is degraded but not lost. The ensuing form of graceful degradation provides also a reactive measure against Denial of Service. The cooperative algorithm relies on the fact that the available information from the other sensors, though not necessarily complete, is trustworthy. To ensure trustworthiness, a security suite has been designed, specifically oriented to the underwater scenario, and in particular with the goal of reducing the communication overhead introduced by security in terms of number and size of messages. The paper gives implementation details on the integration between the security suite and the cooperative algorithm and provides statistics on the performance of the system as collected during the UAN project sea trial held in Trondheim, Norway, in May 2011

    Maximize resource utilization based channel access model with presence of reactive jammer for underwater wireless sensor network

    Get PDF
    Underwater sensor networks (UWSNs) are vulnerable to jamming attacks. Especially, reactive jamming which emerged as a greatest security threat to UWSNs. Reactive jammer are difficult to be removed, defended and identified. Since reactive jammer can control and regulate (i.e., the duration of the jam signal) the probability of jamming for maintaining high vulnerability with low detection probability. The existing model are generally designed considering terrestrial wireless sensor networks (TWSNs). Further, these models are limited in their ability to detect jamming correctly, distinguish between the corrupted and uncorrupted parts of a packet, and be adaptive with the dynamic environment. Cooperative jamming model has presented in recent times to utilize resource efficiently. However, very limited work is carried out using cooperative jamming detection. For overcoming research challenges, this work present Maximize Resource Utilization based Channel Access (MRUCA). The MRUCA uses cross layer design for mitigating reactive jammer (i.e., MRUCA jointly optimizes the cooperative hopping probabilities and channel accessibility probabilities of authenticated sensor device). Along with channel, load capacity of authenticated sensor device is estimated to utilize (maximize) resource efficiently. Experiment outcome shows the proposed MRUCA model attain superior performance than state-of-art model in terms of packet transmission, BER and Detection rate

    Mobile underwater sensor networks for protection and security: field experience at the UAN11 experiment

    Get PDF
    The EU-funded project UAN (Underwater Acoustic Network) was aimed at conceiving, developing, and testing at sea an innovative and operational concept for integrating underwater and above-water sensors in a unique communication system to protect offshore and coastline critical infrastructures. This work gives details on the underwater part of the project. It introduces a set of original security features and gives details on the integration of autonomous underwater vehicles (AUVs) as mobile nodes of the network and as surveillance assets, acoustically controlled by the command and control center to respond against intrusions. Field results are given of the final UAN project sea trial, UAN11, held in May 2011 in Norway. During the experimental activities, a UAN composed of four fixed nodes, two AUVs, and one mobile node mounted on the supporting research vessel was operated continuously and integrated into a global protection system. In this article, the communication performance of the network is reported in terms of round-trip time, packet loss, and average delivery ratio. The major results of the experiment can be thus summarized: the implemented network structure was successful in continuously operating over five days with nodes seamlessly entering and exiting the network; the performance of the network varied greatly with fluctuations in the acoustic channel; the addition of security features induced a minor degradation in network performance with respect to channel variation; the AUVs were successfully controlled from a remote station through acoustic signals routed by the network

    Mobile underwater sensor networks for protection and security: field experience at the UAN11 experiment

    Get PDF
    An underwater acoustic network (UAN) represents a communication infrastructure that canoffer the necessary flexibility for continuous monitoring and surveillance of critical infras-tructures located by the sea. Given the current limitation of acoustic-based communicationmethods, a robust implementation of UANs is still an open research field. The FP7 UANproject addressed such a problem, and it reached the integration of a mobile underwatersensor network within a wide-area network, which included above water and underwatersensors, for protection and security. This paper describes some of the main results achievedduring the project. In particular, this work addresses solutions for the upper-layers of theUAN, with focus on the integration of autonomous underwater vehicles (AUVs) as mobilenodes of the network, and on the inclusion of network security mechanisms. The recent at-sea successes that have been demonstrated within the UAN framework are detailed. Resultsare given of the final UAN project demonstration, UAN11, held in the May of 2011, whenan underwater acoustic network composed by four fixed nodes, two autonomous underwa-ter vehicles (AUVs), and one mobile node mounted on the supporting research vessel, wascontinuously operated for one week, and integrated into a global protection system

    Adaptable underwater networks: The relation between autonomy and communications

    Get PDF
    This paper discusses requirements for autonomy and communications in maritime environments through two use cases which are sourced from military scenarios: Mine Counter Measures (MCM) and Anti-Submarine Warfare (ASW). To address these requirements, this work proposes a service-oriented architecture that breaks the typical boundaries between the autonomy and the communications stacks. An initial version of the architecture has been implemented and its deployment during a field trial done in January 2019 is reported. The paper discusses the achieved results in terms of system flexibility and ability to address the MCM and ASW requirements

    An Optimized, Data Distribution Service-Based Solution for Reliable Data Exchange Among Autonomous Underwater Vehicles

    Get PDF
    Major challenges are presented when managing a large number of heterogeneous vehicles that have to communicate underwater in order to complete a global mission in a cooperative manner. In this kind of application domain, sending data through the environment presents issues that surpass the ones found in other overwater, distributed, cyber-physical systems (i.e., low bandwidth, unreliable transport medium, data representation and hardware high heterogeneity). This manuscript presents a Publish/Subscribe-based semantic middleware solution for unreliable scenarios and vehicle interoperability across cooperative and heterogeneous autonomous vehicles. The middleware relies on different iterations of the Data Distribution Service (DDS) software standard and their combined work between autonomous maritime vehicles and a control entity. It also uses several components with different functionalities deemed as mandatory for a semantic middleware architecture oriented to maritime operations (device and service registration, context awareness, access to the application layer) where other technologies are also interweaved with middleware (wireless communications, acoustic networks). Implementation details and test results, both in a laboratory and a deployment scenario, have been provided as a way to assess the quality of the system and its satisfactory performanceEuropean Commission H2020. SWARMs European project (Smart and Networking Underwater Robots in Cooperation Meshes), under Grant Agreement No. 662107-SWARMs-ECSEL-2014-1, partially supported by the ECSEL JU, the Spanish Ministry of Economy and Competitiveness (Ref: PCIN-2014-022-C02-02)
    • …
    corecore