104 research outputs found

    Maximum Likelihood Detection for Cooperative Molecular Communication

    Get PDF
    In this paper, symbol-by-symbol maximum likelihood (ML) detection is proposed for a cooperative diffusion-based molecular communication (MC) system. In this system, a fusion center (FC) chooses the transmitter's symbol that is more likely, given the likelihood of the observations from multiple receivers (RXs). We propose three different ML detection variants according to different constraints on the information available to the FC, which enables us to demonstrate trade-offs in their performance versus the information available. The system error probability for one variant is derived in closed form. Numerical and simulation results show that the ML detection variants provide lower bounds on the error performance of the simpler cooperative variants and demonstrate that majority rule detection has performance comparable to ML detection when the reporting is noisy.Comment: 7 pages, 4 figurs. This work has been accepted by the IEEE ICC 201

    Symbol-by-Symbol Maximum Likelihood Detection for Cooperative Molecular Communication

    Get PDF
    In this paper, symbol-by-symbol maximum likelihood (ML) detection is proposed for a cooperative diffusion-based molecular communication (MC) system. In this system, the transmitter (TX) sends a common information symbol to multiple receivers (RXs) and a fusion center (FC) chooses the TX symbol that is more likely, given the likelihood of its observations from all RXs. The transmission of a sequence of binary symbols and the resultant intersymbol interference are considered in the cooperative MC system. Three ML detection variants are proposed according to different RX behaviors and different knowledge at the FC. The system error probabilities for two ML detector variants are derived, one of which is in closed form. The optimal molecule allocation among RXs to minimize the system error probability of one variant is determined by solving a joint optimization problem. Also for this variant, the equal distribution of molecules among two symmetric RXs is analytically shown to achieve the local minimal error probability. Numerical and simulation results show that the ML detection variants provide lower bounds on the error performance of simpler, non-ML cooperative variants and demonstrate that these simpler cooperative variants have error performance comparable to ML detectors.Comment: 15 pages, 7 figures; submission for possible IEEE publication. arXiv admin note: text overlap with arXiv:1704.0562

    Sequential decision fusion for abnormality detection via diffusive molecular communications

    Get PDF
    This paper considers the task of abnormality detection in a fluid medium, employing a molecular communications (MC) based network of nanoscale sensors. This task entails sensing, detection and reporting of abnormal changes in the environment that may characterize a disorder or an abnormal event. Such distributed detection (DD) problems are of paramount interest, especially in applications such as health monitoring, disease diagnosis, targeted drug delivery, environmental sensing and monitoring, contaminant detection and removal, and environmental remediation. This letter proposes, for the first time in the literature, to employ a sequential probability ratio test based approach to the decision fusion in diffusive MC based DD. The proposed approach leads to considerable gains in the average number of samples required for the decision compared to its fixed-sample size counterparts, resulting in a significant improvement in the average decision delay. In the investigated DD scenarios, we observe savings of up to 50% in the number of samples required for decision fusion

    Channel Modeling for Diffusive Molecular Communication - A Tutorial Review

    Get PDF
    Molecular communication (MC) is a new communication engineering paradigm where molecules are employed as information carriers. MC systems are expected to enable new revolutionary applications such as sensing of target substances in biotechnology, smart drug delivery in medicine, and monitoring of oil pipelines or chemical reactors in industrial settings. As for any other kind of communication, simple yet sufficiently accurate channel models are needed for the design, analysis, and efficient operation of MC systems. In this paper, we provide a tutorial review on mathematical channel modeling for diffusive MC systems. The considered end-to-end MC channel models incorporate the effects of the release mechanism, the MC environment, and the reception mechanism on the observed information molecules. Thereby, the various existing models for the different components of an MC system are presented under a common framework and the underlying biological, chemical, and physical phenomena are discussed. Deterministic models characterizing the expected number of molecules observed at the receiver and statistical models characterizing the actual number of observed molecules are developed. In addition, we provide channel models for time-varying MC systems with moving transmitters and receivers, which are relevant for advanced applications such as smart drug delivery with mobile nanomachines. For complex scenarios, where simple MC channel models cannot be obtained from first principles, we investigate simulation-driven and experimentally-driven channel models. Finally, we provide a detailed discussion of potential challenges, open research problems, and future directions in channel modeling for diffusive MC systems.Comment: 40 pages; 23 figures, 2 tables; this paper is submitted to the Proceedings of IEE
    corecore