42,513 research outputs found

    Cooperation of storage operation in a power network with renewable generation

    Get PDF
    In this paper, we seek to properly schedule the operation of multiple storage devices so as to minimize the expected total cost (of conventional generation) in a power network with intermittent renewable generation. Since the power network constraints make it intractable to compute optimal storage operation policies through dynamic programming-based approaches, we propose a Lyapunov optimization-based online algorithm (LOPN), which makes decisions based only on the current state of the system (i.e., the current demand and renewable generation). The proposed algorithm is computationally simple and achieves asymptotic optimality (as the capacity of energy storage grows large). To improve the performance of the LOPN algorithm for the case with limited storage capacity, we propose a threshold-based energy storage management (TESM) algorithm that utilizes the forecast information (on demand and renewable generation) over the next a few time slots to make storage operation decisions. Numerical experiments are conducted on IEEE 6- and 9-bus test systems to validate the asymptotic optimality of LOPN, and compare the performance of LOPN and TESM. Numerical results show that TESM significantly outperforms LOPN when the storage capacity is relatively small

    Scenarios for the development of smart grids in the UK: literature review

    Get PDF
    Smart grids are expected to play a central role in any transition to a low-carbon energy future, and much research is currently underway on practically every area of smart grids. However, it is evident that even basic aspects such as theoretical and operational definitions, are yet to be agreed upon and be clearly defined. Some aspects (efficient management of supply, including intermittent supply, two-way communication between the producer and user of electricity, use of IT technology to respond to and manage demand, and ensuring safe and secure electricity distribution) are more commonly accepted than others (such as smart meters) in defining what comprises a smart grid. It is clear that smart grid developments enjoy political and financial support both at UK and EU levels, and from the majority of related industries. The reasons for this vary and include the hope that smart grids will facilitate the achievement of carbon reduction targets, create new employment opportunities, and reduce costs relevant to energy generation (fewer power stations) and distribution (fewer losses and better stability). However, smart grid development depends on additional factors, beyond the energy industry. These relate to issues of public acceptability of relevant technologies and associated risks (e.g. data safety, privacy, cyber security), pricing, competition, and regulation; implying the involvement of a wide range of players such as the industry, regulators and consumers. The above constitute a complex set of variables and actors, and interactions between them. In order to best explore ways of possible deployment of smart grids, the use of scenarios is most adequate, as they can incorporate several parameters and variables into a coherent storyline. Scenarios have been previously used in the context of smart grids, but have traditionally focused on factors such as economic growth or policy evolution. Important additional socio-technical aspects of smart grids emerge from the literature review in this report and therefore need to be incorporated in our scenarios. These can be grouped into four (interlinked) main categories: supply side aspects, demand side aspects, policy and regulation, and technical aspects.

    Transforming Energy Networks via Peer to Peer Energy Trading: Potential of Game Theoretic Approaches

    Get PDF
    Peer-to-peer (P2P) energy trading has emerged as a next-generation energy management mechanism for the smart grid that enables each prosumer of the network to participate in energy trading with one another and the grid. This poses a significant challenge in terms of modeling the decision-making process of each participant with conflicting interest and motivating prosumers to participate in energy trading and to cooperate, if necessary, for achieving different energy management goals. Therefore, such decision-making process needs to be built on solid mathematical and signal processing tools that can ensure an efficient operation of the smart grid. This paper provides an overview of the use of game theoretic approaches for P2P energy trading as a feasible and effective means of energy management. As such, we discuss various games and auction theoretic approaches by following a systematic classification to provide information on the importance of game theory for smart energy research. Then, the paper focuses on the P2P energy trading describing its key features and giving an introduction to an existing P2P testbed. Further, the paper zooms into the detail of some specific game and auction theoretic models that have recently been used in P2P energy trading and discusses some important finding of these schemes.Comment: 38 pages, single column, double spac

    A Novel Hybrid Framework for Co-Optimization of Power and Natural Gas Networks Integrated With Emerging Technologies

    Get PDF
    In a power system with high penetration of renewable power sources, gas-fired units can be considered as a back-up option to improve the balance between generation and consumption in short-term scheduling. Therefore, closer coordination between power and natural gas systems is anticipated. This article presents a novel hybrid information gap decision theory (IGDT)-stochastic cooptimization problem for integrating electricity and natural gas networks to minimize total operation cost with the penetration of wind energy. The proposed model considers not only the uncertainties regarding electrical load demand and wind power output, but also the uncertainties of gas load demands for the residential consumers. The uncertainties of electric load and wind power are handled through a scenario-based approach, and residential gas load uncertainty is handled via IGDT approach with no need for the probability density function. The introduced hybrid model enables the system operator to consider the advantages of both approaches simultaneously. The impact of gas load uncertainty associated with the residential consumers is more significant on the power dispatch of gas-fired plants and power system operation cost since residential gas load demands are prior than gas load demands of gas-fired units. The proposed framework is a bilevel problem that can be reduced to a one-level problem. Also, it can be solved by the implementation of a simple concept without the need for Karush–Kuhn–Tucker conditions. Moreover, emerging flexible energy sources such as the power to gas technology and demand response program are considered in the proposed model for increasing the wind power dispatch, decreasing the total operation cost of the integrated network as well as reducing the effect of system uncertainties on the total operating cost. Numerical results indicate the applicability and effectiveness of the proposed model under different working conditions

    Energy cooperation between the EU and Switzerland Partners by destiny in search of a new model. IES Policy Paper Issue 2020/01 • January 2020

    Get PDF
    The gradual integration of EU energy policy has implications for the national energy policies of its neighbors. While members of the European Economic Area (EEA) and the Energy Community implement large parts of the EU’s energy acquis, other third countries are also affected. Switzerland—physically integrated in the European energy grid but lacking a formalized mechanism of regulatory adaptation with the EU—is an interesting case in this respect, not least because of its implications for a UK-EU relationship post-Brexit. Currently, an EU-Switzerland electricity agreement is being negotiated but its conclusion remains highly uncertain. This briefing paper highlights that either outcome—with or without an electricity agreement—has important implications for the Swiss energy transition, Swiss access to European bodies of energy policy-making, and Swiss renewable investors. Yet, even without an electricity agreement, interdependence between the Swiss and EU electricity systems will increase, creating pressure to find alternative forms of cooperation
    • …
    corecore