21 research outputs found

    Platooning-based control techniques in transportation and logistic

    Get PDF
    This thesis explores the integration of autonomous vehicle technology with smart manufacturing systems. At first, essential control methods for autonomous vehicles, including Linear Matrix Inequalities (LMIs), Linear Quadratic Regulation (LQR)/Linear Quadratic Tracking (LQT), PID controllers, and dynamic control logic via flowcharts, are examined. These techniques are adapted for platooning to enhance coordination, safety, and efficiency within vehicle fleets, and various scenarios are analyzed to confirm their effectiveness in achieving predetermined performance goals such as inter-vehicle distance and fuel consumption. A first approach on simplified hardware, yet realistic to model the vehicle's behavior, is treated to further prove the theoretical results. Subsequently, performance improvement in smart manufacturing systems (SMS) is treated. The focus is placed on offline and online scheduling techniques exploiting Mixed Integer Linear Programming (MILP) to model the shop floor and Model Predictive Control (MPC) to adapt scheduling to unforeseen events, in order to understand how optimization algorithms and decision-making frameworks can transform resource allocation and production processes, ultimately improving manufacturing efficiency. In the final part of the work, platooning techniques are employed within SMS. Autonomous Guided Vehicles (AGVs) are reimagined as autonomous vehicles, grouping them within platoon formations according to different criteria, and controlled to avoid collisions while carrying out production orders. This strategic integration applies platooning principles to transform AGV logistics within the SMS. The impact of AGV platooning on key performance metrics, such as makespan, is devised, providing insights into optimizing manufacturing processes. Throughout this work, various research fields are examined, with intersecting future technologies from precise control in autonomous vehicles to the coordination of manufacturing resources. This thesis provides a comprehensive view of how optimization and automation can reshape efficiency and productivity not only in the domain of autonomous vehicles but also in manufacturing

    The optimisation and integration of AGVs with the manufacturing process

    Get PDF
    In recent years, the manufacturing environment, driven by the growth of advanced technologies and the increasing demand for customised products, has becomes increasingly competitive. In this context, manufacturing systems are now required to be more automated, flexible and reconfigurable. Thus, Autonomous Guided Vehicle (AGV), as a key enabler of dynamic shop floor logistics, are being increasingly widely deployed into the manufacturing sector for the lineside materials supplying, work-in-progress transportation, and finished products collection. A large number of companies and institutions are researching on different AGV systems to integrate AGVs-based shop floor logistics with manufacturing equipment and processes. However, these AGV systems are typically equipped with various communication protocols and utilise ad-hoc communication methods. They lack a generic framework to integrate the AGV systems into the manufacturing systems with minimal engineering effort and system reconfiguration. Current scheduling optimisation methods for multiple AGVs in shop floor logistics now support effective task allocation, shortest route planning, and conflict-free supervision, allocating the delivery tasks based on the location and availability of AGVs. However, these current methods do not give enough consideration to real-time operational information during the manufacturing process and have difficulties in analysing the real-time delivery requests from manufacturing work stations. This not only reduces the efficiency and flexibility of the shop floor logistics, ii but also significantly impacts on the overall performance of manufacturing processes. This thesis presents a generic integration approach, called Smart AGV Management System (SAMS), to support the integration of AGVs with manufacturing processes. The proposed framework enables enhanced interoperability between AGVs-based shop floor logistics and the manufacturing process through a generic data-sharing platform. Moreover, a Digital Twin (DT)-based optimisation method is developed in SAMS that can simulate and analyse the real-time manufacturing process to schedule AGVs for optimising multiple objectives, including the utilisation of work stations, delivery Justin- time (JIT) performance, charging of AGVs and overall energy consumption. This approach is experimentally deployed and evaluated from various perspectives to identify its integration and optimisation capabilities during the reconfiguration and operational phases. The results show that the proposed integration framework can enable a more effective integration with manufacturing process compared to traditional integration methods. In addition, the results demonstrate that the proposed optimisation method can schedule and reschedule AGV-based shop floor logistics when facing a range of system disruptions

    A METHODOLOGY FOR AUTONOMOUS ROOF BOLT INSTALLATION USING INDUSTRIAL ROBOTICS

    Get PDF
    The mining sector is currently in the stage of adopting more automation, and with it, robotics. Autonomous bolting in underground environments remains a hot topic for the mining industry. Roof bolter operators are exposed to hazardous conditions due to their proximity to the unsupported roof, loose bolts, and heavy spinning mass. Prolonged exposure to the risk inevitably leads to accidents and injuries. The current thesis presents the development of a robotic assembly capable of carrying out the entire sequence of roof bolting operations in full and partial autonomous sensor-driven rock bolting operations to achieve a high-impact health and safety intervention for equipment operators. The automation of a complete cycle of drill steel positioning, drilling, bolt orientation and placement, resin placement, and bolt securing is discussed using an anthropomorphic robotic arm.A human-computer interface is developed to enable the interaction of the operators with the machines. Collision detection techniques will have to be implemented to minimize the impact after an unexpected collision has occurred. A robust failure-detection protocol is developed to check the vital parameters of robot operations continuously. This unique approach to automation of small materials handling is described with lessons learned. A user-centered GUI has been developed that allows for a human user to control and monitor the autonomous roof bolter. Preliminary tests have been conducted in a mock mine to evaluate the developed system\u27s performance. In addition, a number of different scenarios simulating typical missions that a roof bolter needs to undertake in an underground coal mine were tested

    Expanding the Horizons of Manufacturing: Towards Wide Integration, Smart Systems and Tools

    Get PDF
    This research topic aims at enterprise-wide modeling and optimization (EWMO) through the development and application of integrated modeling, simulation and optimization methodologies, and computer-aided tools for reliable and sustainable improvement opportunities within the entire manufacturing network (raw materials, production plants, distribution, retailers, and customers) and its components. This integrated approach incorporates information from the local primary control and supervisory modules into the scheduling/planning formulation. That makes it possible to dynamically react to incidents that occur in the network components at the appropriate decision-making level, requiring fewer resources, emitting less waste, and allowing for better responsiveness in changing market requirements and operational variations, reducing cost, waste, energy consumption and environmental impact, and increasing the benefits. More recently, the exploitation of new technology integration, such as through semantic models in formal knowledge models, allows for the capture and utilization of domain knowledge, human knowledge, and expert knowledge toward comprehensive intelligent management. Otherwise, the development of advanced technologies and tools, such as cyber-physical systems, the Internet of Things, the Industrial Internet of Things, Artificial Intelligence, Big Data, Cloud Computing, Blockchain, etc., have captured the attention of manufacturing enterprises toward intelligent manufacturing systems

    Smart Manufacturing

    Get PDF
    This book is a collection of 11 articles that are published in the corresponding Machines Special Issue “Smart Manufacturing”. It represents the quality, breadth and depth of the most updated study in smart manufacturing (SM); in particular, digital technologies are deployed to enhance system smartness by (1) empowering physical resources in production, (2) utilizing virtual and dynamic assets over the Internet to expand system capabilities, (3) supporting data-driven decision-making activities at various domains and levels of businesses, or (4) reconfiguring systems to adapt to changes and uncertainties. System smartness can be evaluated by one or a combination of performance metrics such as degree of automation, cost-effectiveness, leanness, robustness, flexibility, adaptability, sustainability, and resilience. This book features, firstly, the concepts digital triad (DT-II) and Internet of digital triad things (IoDTT), proposed to deal with the complexity, dynamics, and scalability of complex systems simultaneously. This book also features a comprehensive survey of the applications of digital technologies in space instruments; a systematic literature search method is used to investigate the impact of product design and innovation on the development of space instruments. In addition, the survey provides important information and critical considerations for using cutting edge digital technologies in designing and manufacturing space instruments

    Unmanned Vehicle Systems & Operations on Air, Sea, Land

    Get PDF
    Unmanned Vehicle Systems & Operations On Air, Sea, Land is our fourth textbook in a series covering the world of Unmanned Aircraft Systems (UAS) and Counter Unmanned Aircraft Systems (CUAS). (Nichols R. K., 2018) (Nichols R. K., et al., 2019) (Nichols R. , et al., 2020)The authors have expanded their purview beyond UAS / CUAS systems. Our title shows our concern for growth and unique cyber security unmanned vehicle technology and operations for unmanned vehicles in all theaters: Air, Sea and Land – especially maritime cybersecurity and China proliferation issues. Topics include: Information Advances, Remote ID, and Extreme Persistence ISR; Unmanned Aerial Vehicles & How They Can Augment Mesonet Weather Tower Data Collection; Tour de Drones for the Discerning Palate; Underwater Autonomous Navigation & other UUV Advances; Autonomous Maritime Asymmetric Systems; UUV Integrated Autonomous Missions & Drone Management; Principles of Naval Architecture Applied to UUV’s; Unmanned Logistics Operating Safely and Efficiently Across Multiple Domains; Chinese Advances in Stealth UAV Penetration Path Planning in Combat Environment; UAS, the Fourth Amendment and Privacy; UV & Disinformation / Misinformation Channels; Chinese UAS Proliferation along New Silk Road Sea / Land Routes; Automaton, AI, Law, Ethics, Crossing the Machine – Human Barrier and Maritime Cybersecurity.Unmanned Vehicle Systems are an integral part of the US national critical infrastructure The authors have endeavored to bring a breadth and quality of information to the reader that is unparalleled in the unclassified sphere. Unmanned Vehicle (UV) Systems & Operations On Air, Sea, Land discusses state-of-the-art technology / issues facing U.S. UV system researchers / designers / manufacturers / testers. We trust our newest look at Unmanned Vehicles in Air, Sea, and Land will enrich our students and readers understanding of the purview of this wonderful technology we call UV.https://newprairiepress.org/ebooks/1035/thumbnail.jp

    Design and implementation of a modular controller for robotic machines

    Get PDF
    This research focused on the design and implementation of an Intelligent Modular Controller (IMC) architecture designed to be reconfigurable over a robust network. The design incorporates novel communication, hardware, and software architectures. This was motivated by current industrial needs for distributed control systems due to growing demand for less complexity, more processing power, flexibility, and greater fault tolerance. To this end, three main contributions were made. Most distributed control architectures depend on multi-tier heterogeneous communication networks requiring linking devices and/or complex middleware. In this study, first, a communication architecture was proposed and implemented with a homogenous network employing the ubiquitous Ethernet for both real-time and non real-time communication. This was achieved by a producer-consumer coordination model for real-time data communication over a segmented network, and a client-server model for point-to-point transactions. The protocols deployed use a Time-Triggered (TT) approach to schedule real-time tasks on the network. Unlike other TT approaches, the scheduling mechanism does not need to be configured explicitly when controller nodes are added or removed. An implicit clock synchronization technique was also developed to complement the architecture. Second, a reconfigurable mechanism based on an auto-configuration protocol was developed. Modules on the network use this protocol to automatically detect themselves, establish communication, and negotiate for a desired configuration. Third, the research demonstrated hardware/software co-design as a contribution to the growing discipline of mechatronics. The IMC consists of a motion controller board designed and prototyped in-house, and a Java microcontroller. An IMC is mapped to each machine/robot axis, and an additional IMC can be configured to serve as a real-time coordinator. The entire architecture was implemented in Java, thus reinforcing uniformity, simplicity, modularity, and openness. Evaluation results showed the potential of the flexible controller to meet medium to high performance machining requirements

    20. ASIM Fachtagung Simulation in Produktion und Logistik 2023

    Get PDF
    corecore