248,428 research outputs found

    Game Theoretical Interactions of Moving Agents

    Full text link
    Game theory has been one of the most successful quantitative concepts to describe social interactions, their strategical aspects, and outcomes. Among the payoff matrix quantifying the result of a social interaction, the interaction conditions have been varied, such as the number of repeated interactions, the number of interaction partners, the possibility to punish defective behavior etc. While an extension to spatial interactions has been considered early on such as in the "game of life", recent studies have focussed on effects of the structure of social interaction networks. However, the possibility of individuals to move and, thereby, evade areas with a high level of defection, and to seek areas with a high level of cooperation, has not been fully explored so far. This contribution presents a model combining game theoretical interactions with success-driven motion in space, and studies the consequences that this may have for the degree of cooperation and the spatio-temporal dynamics in the population. It is demonstrated that the combination of game theoretical interactions with motion gives rise to many self-organized behavioral patterns on an aggregate level, which can explain a variety of empirically observed social behaviors

    Effectiveness of conditional punishment for the evolution of public cooperation

    Get PDF
    Collective actions, from city marathons to labor strikes, are often mass-driven and subject to the snowball effect. Motivated by this, we study evolutionary advantages of conditional punishment in the spatial public goods game. Unlike unconditional punishers who always impose the same fines on defectors, conditional punishers do so proportionally with the number of other punishers in the group. Phase diagrams in dependence on the punishment fine and cost reveal that the two types of punishers cannot coexist. Spontaneous coarsening of the two strategies leads to an indirect territorial competition with the defectors, which is won by unconditional punishers only if the sanctioning is inexpensive. Otherwise conditional punishers are the victors of the indirect competition, indicating that under more realistic conditions they are indeed the more effective strategy. Both continuous and discontinuous phase transitions as well as tricritical points characterize the complex evolutionary dynamics, which is due to multipoint interactions that are introduced by conditional punishment. We propose indirect territorial competition as a generally applicable mechanism relying on pattern formation, by means of which spatial structure can be utilized by seemingly subordinate strategies to avoid evolutionary extinction

    A generalized public goods game with coupling of individual ability and project benefit

    Full text link
    Facing a heavy task, any single person can only make a limited contribution and team cooperation is needed. As one enjoys the benefit of the public goods, the potential benefits of the project are not always maximized and may be partly wasted. By incorporating individual ability and project benefit into the original public goods game, we study the coupling effect of the four parameters, the upper limit of individual contribution, the upper limit of individual benefit, the needed project cost and the upper limit of project benefit on the evolution of cooperation. Coevolving with the individual-level group size preferences, an increase in the upper limit of individual benefit promotes cooperation while an increase in the upper limit of individual contribution inhibits cooperation. The coupling of the upper limit of individual contribution and the needed project cost determines the critical point of the upper limit of project benefit, where the equilibrium frequency of cooperators reaches its highest level. Above the critical point, an increase in the upper limit of project benefit inhibits cooperation. The evolution of cooperation is closely related to the preferred group-size distribution. A functional relation between the frequency of cooperators and the dominant group size is found

    Dynamic instability of cooperation due to diverse activity patterns in evolutionary social dilemmas

    Full text link
    Individuals might abstain from participating in an instance of an evolutionary game for various reasons, ranging from lack of interest to risk aversion. In order to understand the consequences of such diverse activity patterns on the evolution of cooperation, we study a weak prisoner's dilemma where each player's participation is probabilistic rather than certain. Players that do not participate get a null payoff and are unable to replicate. We show that inactivity introduces cascading failures of cooperation, which are particularly severe on scale-free networks with frequently inactive hubs. The drops in the fraction of cooperators are sudden, while the spatiotemporal reorganization of compact cooperative clusters, and thus the recovery, takes time. Nevertheless, if the activity of players is directly proportional to their degree, or if the interaction network is not strongly heterogeneous, the overall evolution of cooperation is not impaired. This is because inactivity negatively affects the potency of low-degree defectors, who are hence unable to utilize on their inherent evolutionary advantage. Between cascading failures, the fraction of cooperators is therefore higher than usual, which lastly balances out the asymmetric dynamic instabilities that emerge due to intermittent blackouts of cooperative hubs.Comment: 6 two-column pages, 6 figures; accepted for publication in Europhysics Letter

    Why Trust Out-groups? The Role of Punishment Under Uncertainty

    Get PDF
    We conducted a hidden-effort trust game, in which we assigned subjects to one of two groups. The groups, which were formed through two different group formation processes, included a “social” group that required sharing and exchange among its members, and a “non-social” group that did not. Once assigned, subjects participated in the game with members from both groups, either with or without the opportunity to punish a trustee who may have defected on them. We found that for investors in the non-social group, the opportunity to punish a trustee worked to promote trust, but only when the trustee was a member of the other group. For the social group, the opportunity to punish had no effect on the investors’ trust decisions, regardless of the trustee\u27s group. We provide a theoretical framework to explain this asymmetric effect of punishment on trust. Our results suggest that groups with identities founded in sharing and exchange—a feature of globalized societies—may find it less necessary to engage in costly punishment. As a result, they may enjoy gains in economic efficiency

    Optimal Self-Organization

    Full text link
    We present computational and analytical results indicating that systems of driven entities with repulsive interactions tend to reach an optimal state associated with minimal interaction and minimal dissipation. Using concepts from non-equilibrium thermodynamics and game theoretical ideas, we generalize this finding to an even wider class of self-organizing systems which have the ability to reach a state of maximal overall ``success''. This principle is expected to be relevant for driven systems in physics like sheared granular media, but it is also applicable to biological, social, and economic systems, for which only a limited number of quantitative principles are available yet.Comment: This is the detailled revised version of a preprint on ``Self-Organised Optimality'' (cond-mat/9903319). For related work see http://www.theo2.physik.uni-stuttgart.de/helbing.html and http://angel.elte.hu/~vicsek
    corecore