35 research outputs found

    Effect of Selfish Behavior on Power Consumption in Mobile Ad Hoc Network

    Get PDF
    A multi hop mobile ad hoc network is a peer to peer network of wireless nodes where nodes are required to perform routing activity to provide end to end connectivity among nodes. As mobile nodes are constrained by battery power and bandwidth, some nodes may behave selfishly and deny forwarding packets for other nodes, even though they expect other nodes to forward packets to keep network connected. We simulate two selfish behaviors on top of Dynamic Source Routing (DSR) protocol: the first, selfish nodes do not forward data or control packets (routing packets) for other nodes and the second, selfish nodes turn off their network interface card when they have nothing to communicate. We compare the energy saving to the selfish nodes for both the misbehaviors and show that the second selfish behavior saves more energy. This is important result because most of the cooperation enforcement mechanisms in literature, except PCOM [2], address the first selfish behavior. Also, the second selfish behavior can be easily done by layman users without any protocol level changes. Secondly, with our simulation study we find that in dense mobile ad hoc networks where route breakages are frequent, routing control packets consume significant fraction of node energy and selfish behavior by certain number of nodes reduce the overall routing overhead in network which in turn result in energy saving for both, well behaving nodes and selfish nodes

    Applications of Repeated Games in Wireless Networks: A Survey

    Full text link
    A repeated game is an effective tool to model interactions and conflicts for players aiming to achieve their objectives in a long-term basis. Contrary to static noncooperative games that model an interaction among players in only one period, in repeated games, interactions of players repeat for multiple periods; and thus the players become aware of other players' past behaviors and their future benefits, and will adapt their behavior accordingly. In wireless networks, conflicts among wireless nodes can lead to selfish behaviors, resulting in poor network performances and detrimental individual payoffs. In this paper, we survey the applications of repeated games in different wireless networks. The main goal is to demonstrate the use of repeated games to encourage wireless nodes to cooperate, thereby improving network performances and avoiding network disruption due to selfish behaviors. Furthermore, various problems in wireless networks and variations of repeated game models together with the corresponding solutions are discussed in this survey. Finally, we outline some open issues and future research directions.Comment: 32 pages, 15 figures, 5 tables, 168 reference

    Modeling Security and Cooperation in Wireless Networks Using Game Theory

    Get PDF
    This research involves the design, development, and theoretical demonstration of models resulting in integrated misbehavior resolution protocols for ad hoc networked devices. Game theory was used to analyze strategic interaction among independent devices with conflicting interests. Packet forwarding at the routing layer of autonomous ad hoc networks was investigated. Unlike existing reputation based or payment schemes, this model is based on repeated interactions. To enforce cooperation, a community enforcement mechanism was used, whereby selfish nodes that drop packets were punished not only by the victim, but also by all nodes in the network. Then, a stochastic packet forwarding game strategy was introduced. Our solution relaxed the uniform traffic demand that was pervasive in other works. To address the concerns of imperfect private monitoring in resource aware ad hoc networks, a belief-free equilibrium scheme was developed that reduces the impact of noise in cooperation. This scheme also eliminated the need to infer the private history of other nodes. Moreover, it simplified the computation of an optimal strategy. The belief-free approach reduced the node overhead and was easily tractable. Hence it made the system operation feasible. Motivated by the versatile nature of evolutionary game theory, the assumption of a rational node is relaxed, leading to the development of a framework for mitigating routing selfishness and misbehavior in Multi hop networks. This is accomplished by setting nodes to play a fixed strategy rather than independently choosing a rational strategy. A range of simulations was carried out that showed improved cooperation between selfish nodes when compared to older results. Cooperation among ad hoc nodes can also protect a network from malicious attacks. In the absence of a central trusted entity, many security mechanisms and privacy protections require cooperation among ad hoc nodes to protect a network from malicious attacks. Therefore, using game theory and evolutionary game theory, a mathematical framework has been developed that explores trust mechanisms to achieve security in the network. This framework is one of the first steps towards the synthesis of an integrated solution that demonstrates that security solely depends on the initial trust level that nodes have for each other

    Mitigating Misbehavior In Wireless Networks: A Game Theoretic Approach

    Get PDF
    In a distributed wireless system, multiple network nodes behave cooperatively towards a common goal. Though such assumptions on cooperation are desirable (e.g., controlling the transmit power level, reducing interference for each other, revealing private information, adhering to network policies) for analyzing and modeling, certain nodes belonging to a real-world system have often shown to deviate. These nodes, known as misbehaving nodes, bring more challenges to the design of the wireless network because the unreliable channel makes the actions of the nodes hidden from each other. In this dissertation, we analyze two types of misbehavior, namely, selfish noncooperation and malicious attacking. We apply game theoretic techniques to model the interactions among the nodes in the network. First, we consider a homogeneous unreliable channel and analyze the necessary and sufficient conditions to enforce cooperative packet forwarding among a node pair. We formulate an anti-collusion game and derive the conditions that achieve full cooperation when the non-cooperative nodes collude. In addition, we consider multi-hop communication with a heterogeneous channel model. We refine our game model as a hidden action game with imperfect private monitoring. A state machine based strategy is proposed to reach Nash Equilibrium. The strategy attains cooperative packet forwarding with heterogeneous channel and requires only partial and imperfect information. Furthermore, it also enforces cooperation in multi-hop packet forwarding. To tackle the malicious attacks, we use Bayesian game analysis to show the existence of equilibrium in the detection game and argue that it might not be profitable to isolate the malicious nodes upon detection. We propose the concept of coexistence with malicious nodes by proving the co-existence equilibrium and derive the conditions that achieve the equilibrium. This research is further accomplished by extensive simulation studies. Simulation results illustrate the properties of the games and the derived equilibria. The results validate our design philosophy and clearly indicate that the proposed game theoretic solutions can be effectively used to enforce cooperation and mitigate attacks

    Modeling Security and Resource Allocation for Mobile Multi-hop Wireless Neworks Using Game Theory

    Get PDF
    This dissertation presents novel approaches to modeling and analyzing security and resource allocation in mobile ad hoc networks (MANETs). The research involves the design, implementation and simulation of different models resulting in resource sharing and security’s strengthening of the network among mobile devices. Because of the mobility, the network topology may change quickly and unpredictably over time. Moreover, data-information sent from a source to a designated destination node, which is not nearby, has to route its information with the need of intermediary mobile nodes. However, not all intermediary nodes in the network are willing to participate in data-packet transfer of other nodes. The unwillingness to participate in data forwarding is because a node is built on limited resources such as energy-power and data. Due to their limited resource, nodes may not want to participate in the overall network objectives by forwarding data-packets of others in fear of depleting their energy power. To enforce cooperation among autonomous nodes, we design, implement and simulate new incentive mechanisms that used game theoretic concepts to analyze and model the strategic interactions among rationale nodes with conflicting interests. Since there is no central authority and the network is decentralized, to address the concerns of mobility of selfish nodes in MANETs, a model of security and trust relationship was designed and implemented to improve the impact of investment into trust mechanisms. A series of simulations was carried out that showed the strengthening of security in a network with selfish and malicious nodes. Our research involves bargaining for resources in a highly dynamic ad-hoc network. The design of a new arbitration mechanism for MANETs utilizes the Dirichlet distribution for fairness in allocating resources. Then, we investigated the problem of collusion nodes in mobile ad-hoc networks with an arbitrator. We model the collusion by having a group of nodes disrupting the bargaining process by not cooperating with the arbitrator. Finally, we investigated the resource allocation for a system between agility and recovery using the concept of Markov decision process. Simulation results showed that the proposed solutions may be helpful to decision-makers when allocating resources between separated teams

    A cartel maintenance framework to enforce cooperation in wireless networks with selfish users

    Full text link

    Supporting cooperation and coordination in open multi-agent systems

    Get PDF
    Cooperation and coordination between agents are fundamental processes for increasing aggregate and individual benefit in open Multi-Agent Systems (MAS). The increased ubiquity, size, and complexity of open MAS in the modern world has prompted significant research interest in the mechanisms that underlie cooperative and coordinated behaviour. In open MAS, in which agents join and leave freely, we can assume the following properties: (i) there are no centralised authorities, (ii) agent authority is uniform, (iii) agents may be heterogeneously owned and designed, and may consequently have con icting intentions and inconsistent capabilities, and (iv) agents are constrained in interactions by a complex connecting network topology. Developing mechanisms to support cooperative and coordinated behaviour that remain effective under these assumptions remains an open research problem. Two of the major mechanisms by which cooperative and coordinated behaviour can be achieved are (i) trust and reputation, and (ii) norms and conventions. Trust and reputation, which support cooperative and coordinated behaviour through notions of reciprocity, are effective in protecting agents from malicious or selfish individuals, but their capabilities can be affected by a lack of information about potential partners and the impact of the underlying network structure. Regarding conventions and norms, there are still a wide variety of open research problems, including: (i) manipulating which convention or norm a population adopts, (ii) how to exploit knowledge of the underlying network structure to improve mechanism efficacy, and (iii) how conventions might be manipulated in the middle and latter stages of their lifecycle, when they have become established and stable. In this thesis, we address these issues and propose a number of techniques and theoretical advancements that help ensure the robustness and efficiency of these mechanisms in the context of open MAS, and demonstrate new techniques for manipulating convention emergence in large, distributed populations. Specfically, we (i) show that gossiping of reputation information can mitigate the detrimental effects of incomplete information on trust and reputation and reduce the impact of network structure, (ii) propose a new model of conventions that accounts for limitations in existing theories, (iii) show how to manipulate convention emergence using small groups of agents inserted by interested parties, (iv) demonstrate how to learn which locations in a network have the greatest capacity to in uence which convention a population adopts, and (v) show how conventions can be manipulated in the middle and latter stages of the convention lifecycle

    Towards Trustworthy, Efficient and Scalable Distributed Wireless Systems

    Get PDF
    Advances in wireless technologies have enabled distributed mobile devices to connect with each other to form distributed wireless systems. Due to the absence of infrastructure, distributed wireless systems require node cooperation in multi-hop routing. However, the openness and decentralized nature of distributed wireless systems where each node labors under a resource constraint introduces three challenges: (1) cooperation incentives that effectively encourage nodes to offer services and thwart the intentions of selfish and malicious nodes, (2) cooperation incentives that are efficient to deploy, use and maintain, and (3) routing to efficiently deliver messages with less overhead and lower delay. While most previous cooperation incentive mechanisms rely on either a reputation system or a price system, neither provides sufficiently effective cooperation incentives nor efficient resource consumption. Also, previous routing algorithms are not sufficiently efficient in terms of routing overhead or delay. In this research, we propose mechanisms to improve the trustworthiness, scalability, and efficiency of the distributed wireless systems. Regarding trustworthiness, we study previous cooperation incentives based on game theory models. We then propose an integrated system that combines a reputation system and a price system to leverage the advantages of both methods to provide trustworthy services. Analytical and simulation results show higher performance for the integrated system compared to the other two systems in terms of the effectiveness of the cooperation incentives and detection of selfish nodes. Regarding scalability in a large-scale system, we propose a hierarchical Account-aided Reputation Management system (ARM) to efficiently and effectively provide cooperation incentives with small overhead. To globally collect all node reputation information to accurately calculate node reputation information and detect abnormal reputation information with low overhead, ARM builds a hierarchical locality-aware Distributed Hash Table (DHT) infrastructure for the efficient and integrated operation of both reputation systems and price systems. Based on the DHT infrastructure, ARM can reduce the reputation management overhead in reputation and price systems. We also design a distributed reputation manager auditing protocol to detect a malicious reputation manager. The experimental results show that ARM can detect the uncooperative nodes that gain fraudulent benefits while still being considered as trustworthy in previous reputation and price systems. Also, it can effectively identify misreported, falsified, and conspiratorial information, providing accurate node reputations that truly reflect node behaviors. Regarding an efficient distributed system, we propose a social network and duration utility-based distributed multi-copy routing protocol for delay tolerant networks based on the ARM system. The routing protocol fully exploits node movement patterns in the social network to increase delivery throughput and decrease delivery delay while generating low overhead. The simulation results show that the proposed routing protocol outperforms the epidemic routing and spray and wait routing in terms of higher message delivery throughput, lower message delivery delay, lower message delivery overhead, and higher packet delivery success rate. The three components proposed in this dissertation research improve the trustworthiness, scalability, and efficiency of distributed wireless systems to meet the requirements of diversified distributed wireless applications

    Signaling and Reciprocity:Robust Decentralized Information Flows in Social, Communication, and Computer Networks

    Get PDF
    Complex networks exist for a number of purposes. The neural, metabolic and food networks ensure our survival, while the social, economic, transportation and communication networks allow us to prosper. Independently of the purposes and particularities of the physical embodiment of the networks, one of their fundamental functions is the delivery of information from one part of the network to another. Gossip and diseases diffuse in the social networks, electrochemical signals propagate in the neural networks and data packets travel in the Internet. Engineering networks for robust information flows is a challenging task. First, the mechanism through which the network forms and changes its topology needs to be defined. Second, within a given topology, the information must be routed to the appropriate recipients. Third, both the network formation and the routing mechanisms need to be robust against a wide spectrum of failures and adversaries. Fourth, the network formation, routing and failure recovery must operate under the resource constraints, either intrinsic or extrinsic to the network. Finally, the autonomously operating parts of the network must be incentivized to contribute their resources to facilitate the information flows. This thesis tackles the above challenges within the context of several types of networks: 1) peer-to-peer overlays – computers interconnected over the Internet to form an overlay in which participants provide various services to one another, 2) mobile ad-hoc networks – mobile nodes distributed in physical space communicating wirelessly with the goal of delivering data from one part of the network to another, 3) file-sharing networks – networks whose participants interconnect over the Internet to exchange files, 4) social networks – humans disseminating and consuming information through the network of social relationships. The thesis makes several contributions. Firstly, we propose a general algorithm, which given a set of nodes embedded in an arbitrary metric space, interconnects them into a network that efficiently routes information. We apply the algorithm to the peer-to-peer overlays and experimentally demonstrate its high performance, scalability as well as resilience to continuous peer arrivals and departures. We then shift our focus to the problem of the reliability of routing in the peer-to-peer overlays. Each overlay peer has limited resources and when they are exhausted this ultimately leads to delayed or lost overlay messages. All the solutions addressing this problem rely on message redundancy, which significantly increases the resource costs of fault-tolerance. We propose a bandwidth-efficient single-path Forward Feedback Protocol (FFP) for overlay message routing in which successfully delivered messages are followed by a feedback signal to reinforce the routing paths. Internet testbed evaluation shows that FFP uses 2-5 times less network bandwidth than the existing protocols relying on message redundancy, while achieving comparable fault-tolerance levels under a variety of failure scenarios. While the Forward Feedback Protocol is robust to message loss and delays, it is vulnerable to malicious message injection. We address this and other security problems by proposing Castor, a variant of FFP for mobile ad-hoc networks (MANETs). In Castor, we use the same general mechanism as in FFP; each time a message is routed, the routing path is either enforced or weakened by the feedback signal depending on whether the routing succeeded or not. However, unlike FFP, Castor employs cryptographic mechanisms for ensuring the integrity and authenticity of the messages. We compare Castor to four other MANET routing protocols. Despite Castor's simplicity, it achieves up to 40% higher packet delivery rates than the other protocols and recovers at least twice as fast as the other protocols in a wide range of attacks and failure scenarios. Both of our protocols, FFP and Castor, rely on simple signaling to improve the routing robustness in peer-to-peer and mobile ad-hoc networks. Given the success of the signaling mechanism in shaping the information flows in these two types of networks, we examine if signaling plays a similar crucial role in the on-line social networks. We characterize the propagation of URLs in the social network of Twitter. The data analysis uncovers several statistical regularities in the user activity, the social graph, the structure of the URL cascades as well as the communication and signaling dynamics. Based on these results, we propose a propagation model that accurately predicts which users are likely to mention which URLs. We outline a number of applications where the social network information flow modelling would be crucial: content ranking and filtering, viral marketing and spam detection. Finally, we consider the problem of freeriding in peer-to-peer file-sharing applications, when users can download data from others, but never reciprocate by uploading. To address the problem, we propose a variant of the BitTorrent system in which two peers are only allowed to connect if their owners know one another in the real world. When the users know which other users their BitTorrent client connects to, they are more likely to cooperate. The social network becomes the content distribution network and the freeriding problem is solved by leveraging the social norms and reciprocity to stabilize cooperation rather than relying on technological means. Our extensive simulation shows that the social network topology is an efficient and scalable content distribution medium, while at the same time provides robustness to freeriding
    corecore