2,902 research outputs found

    A Software Suite for the Control and the Monitoring of Adaptive Robotic Ecologies

    Get PDF
    Adaptive robotic ecologies are networks of heterogeneous robotic devices (sensors, actuators, automated appliances) pervasively embedded in everyday environments, where they learn to cooperate towards the achievement of complex tasks. While their flexibility makes them an increasingly popular way to improve a system’s reliability, scalability, robustness and autonomy, their effective realisation demands integrated control and software solutions for the specification, integration and management of their highly heterogeneous and computational constrained components. In this extended abstract we briefly illustrate the characteristic requirements dictated by robotic ecologies, discuss our experience in developing adaptive robotic ecologies, and provide an overview of the specific solutions developed as part of the EU FP7 RUBICON Project

    Internet of robotic things : converging sensing/actuating, hypoconnectivity, artificial intelligence and IoT Platforms

    Get PDF
    The Internet of Things (IoT) concept is evolving rapidly and influencing newdevelopments in various application domains, such as the Internet of MobileThings (IoMT), Autonomous Internet of Things (A-IoT), Autonomous Systemof Things (ASoT), Internet of Autonomous Things (IoAT), Internetof Things Clouds (IoT-C) and the Internet of Robotic Things (IoRT) etc.that are progressing/advancing by using IoT technology. The IoT influencerepresents new development and deployment challenges in different areassuch as seamless platform integration, context based cognitive network integration,new mobile sensor/actuator network paradigms, things identification(addressing, naming in IoT) and dynamic things discoverability and manyothers. The IoRT represents new convergence challenges and their need to be addressed, in one side the programmability and the communication ofmultiple heterogeneous mobile/autonomous/robotic things for cooperating,their coordination, configuration, exchange of information, security, safetyand protection. Developments in IoT heterogeneous parallel processing/communication and dynamic systems based on parallelism and concurrencyrequire new ideas for integrating the intelligent “devices”, collaborativerobots (COBOTS), into IoT applications. Dynamic maintainability, selfhealing,self-repair of resources, changing resource state, (re-) configurationand context based IoT systems for service implementation and integrationwith IoT network service composition are of paramount importance whennew “cognitive devices” are becoming active participants in IoT applications.This chapter aims to be an overview of the IoRT concept, technologies,architectures and applications and to provide a comprehensive coverage offuture challenges, developments and applications

    Public entities driven robotic innovation in urban areas

    Get PDF
    Cities present new challenges and needs to satisfy and improve lifestyle for their citizens under the concept “Smart City”. In order to achieve this goal in a global manner, new technologies are required as the robotic one. But Public entities unknown the possibilities offered by this technology to get solutions to their needs. In this paper the development of the Innovative Public Procurement instruments is explained, specifically the process PDTI (Public end Users Driven Technological Innovation) as a driving force of robotic research and development and offering a list of robotic urban challenges proposed by European cities that have participated in such a process. In the next phases of the procedure, this fact will provide novel robotic solutions addressed to public demand that are an example to be followed by other Smart Cities.Peer ReviewedPostprint (author's final draft

    Robotic ubiquitous cognitive ecology for smart homes

    Get PDF
    Robotic ecologies are networks of heterogeneous robotic devices pervasively embedded in everyday environments, where they cooperate to perform complex tasks. While their potential makes them increasingly popular, one fundamental problem is how to make them both autonomous and adaptive, so as to reduce the amount of preparation, pre-programming and human supervision that they require in real world applications. The project RUBICON develops learning solutions which yield cheaper, adaptive and efficient coordination of robotic ecologies. The approach we pursue builds upon a unique combination of methods from cognitive robotics, machine learning, planning and agent- based control, and wireless sensor networks. This paper illustrates the innovations advanced by RUBICON in each of these fronts before describing how the resulting techniques have been integrated and applied to a smart home scenario. The resulting system is able to provide useful services and pro-actively assist the users in their activities. RUBICON learns through an incremental and progressive approach driven by the feed- back received from its own activities and from the user, while also self-organizing the manner in which it uses available sensors, actuators and other functional components in the process. This paper summarises some of the lessons learned by adopting such an approach and outlines promising directions for future work

    Classifying types of gesture and inferring intent

    Get PDF
    In order to infer intent from gesture, a rudimentary classification of types of gestures into five main classes is introduced. The classification is intended as a basis for incorporating the understanding of gesture into human-robot interaction (HRI). Some requirements for the operational classification of gesture by a robot interacting with humans are also suggested

    Chapter 1 Towards Designing Meaningful Relationships with Robots

    Get PDF
    Social robots are on the brink of entering our lives. However, little knowledge is available about how best to design them. This introductory chapter discusses the real-life social robots of the present as well as of possible futures—without, of course, forgetting the history of robots and their origins in fiction. From a design perspective, robots are promising and challenging. They suggest a technological other (“otherware”). Unlike conventional technologies that directly extend the physical and cognitive abilities of their users, robots engage in social exchange with humans. The authors present an overview of possible starting points for designing meaningful relationships with robots. Recurring themes are contextualized and cross cut, e.g., the influence of science fiction on robot design is discussed and the strategy of anthropomorphization is called into question. The authors respond to these relevant issues by arguing for robots with hybrid forms and unique “superpowers”. They present a new model for human-robot interaction, establishing three different kinds of interactions in terms of the meaning conveyed by robots to humans (delegating, cooperating, and socializing). Rather than imitating and thus replacing humans or animals, the authors conclude, robots should invite their own particular ways of being with us
    corecore