4 research outputs found

    MAPPA. Methodologies applied to archaeological potential Predictivity

    Get PDF
    The fruitful cooperation over the years between the university teaching staff of Univerità di Pisa (Pisa University), the officials of the Soprintendenza per i Beni Archeologici della Toscana (Superintendency for Archaeological Heritage of Tuscany), the officials of the Soprintendenza per i Beni Architettonici, Paesaggistici, Artistici ed Etnoantropologici per le Province di Pisa e Livorno (Superintendency for Architectural, Landscape and Ethno-anthropological Heritage for the Provinces of Pisa and Livorno), and the Comune di Pisa (Municipality of Pisa) has favoured a great deal of research on issues regarding archaeological heritage and the reconstruction of the environmental and landscape context in which Pisa has evolved throughout the centuries of its history. The desire to merge this remarkable know-how into an organic framework and, above all, to make it easily accessible, not only to the scientific community and professional categories involved, but to everyone, together with the wish to provide Pisa with a Map of archaeological potential (the research, protection and urban planning tool capable of converging the heritage protection needs of the remains of the past with the development requirements of the future) led to the development of the MAPPA project – Methodologies applied to archaeological potential predictivity - funded by Regione Toscana in 2010. The two-year project started on 1 July 2011 and will end on 30 June 2013. The first year of research was dedicated to achieving the first objective, that is, to retrieving the results of archaeological investigations from the archives of Superintendencies and University and from the pages of scientific publications, and to making them easily accessible; these results have often never been published or have often been published incompletely and very slowly. For this reason, a webGIS (“MappaGIS” that may freely accessed at http://mappaproject.arch.unipi.it/?page_id=452) was created and will be followed by a MOD (Mappa Open Data archaeological archive), the first Italian archive of open archaeological data, in line with European directives regarding access to Public Administration data and recently implemented by the Italian government also (the beta version of the archive can be viewed at http://mappaproject.arch.unipi.it/?page_id=454). Details are given in this first volume about the operational decisions that led to the creation of the webGIS: the software used, the system architecture, the organisation of information and its structuring into various information layers. But not only. The creation of the webGIS also gave us the opportunity to focus on a series of considerations alongside the work carried out by the MAPPA Laboratory researchers. We took the decision to publish these considerations with a view to promoting debate within the scientific community and, more in general, within the professional categories involved (e.g. public administrators, university researchers, archaeology professionals). This allowed us to overcome the critical aspects that emerged, such as the need to update the archaeological excavation documentation and data archiving systems in order to adjust them to the new standards provided by IT development; most of all, the need for greater and more rapid spreading of information, without which research cannot truly progress. Indeed, it is by comparing and connecting new data in every possible and, at times, unexpected way that research can truly thrive

    An experimental study and evaluation of a new architecture for clinical decision support - integrating the openEHR specifications for the Electronic Health Record with Bayesian Networks

    Get PDF
    Healthcare informatics still lacks wide-scale adoption of intelligent decision support methods, despite continuous increases in computing power and methodological advances in scalable computation and machine learning, over recent decades. The potential has long been recognised, as evidenced in the literature of the domain, which is extensively reviewed. The thesis identifies and explores key barriers to adoption of clinical decision support, through computational experiments encompassing a number of technical platforms. Building on previous research, it implements and tests a novel platform architecture capable of processing and reasoning with clinical data. The key components of this platform are the now widely implemented openEHR electronic health record specifications and Bayesian Belief Networks. Substantial software implementations are used to explore the integration of these components, guided and supplemented by input from clinician experts and using clinical data models derived in hospital settings at Moorfields Eye Hospital. Data quality and quantity issues are highlighted. Insights thus gained are used to design and build a novel graph-based representation and processing model for the clinical data, based on the openEHR specifications. The approach can be implemented using diverse modern database and platform technologies. Computational experiments with the platform, using data from two clinical domains – a preliminary study with published thyroid metabolism data and a substantial study of cataract surgery – explore fundamental barriers that must be overcome in intelligent healthcare systems developments for clinical settings. These have often been neglected, or misunderstood as implementation procedures of secondary importance. The results confirm that the methods developed have the potential to overcome a number of these barriers. The findings lead to proposals for improvements to the openEHR specifications, in the context of machine learning applications, and in particular for integrating them with Bayesian Networks. The thesis concludes with a roadmap for future research, building on progress and findings to date
    corecore