7 research outputs found

    InSPECtor: an end-to-end design framework for compressive pixelated hyperspectral instruments

    Full text link
    Classic designs of hyperspectral instrumentation densely sample the spatial and spectral information of the scene of interest. Data may be compressed after the acquisition. In this paper we introduce a framework for the design of an optimized, micro-patterned snapshot hyperspectral imager that acquires an optimized subset of the spatial and spectral information in the scene. The data is thereby compressed already at the sensor level, but can be restored to the full hyperspectral data cube by the jointly optimized reconstructor. This framework is implemented with TensorFlow and makes use of its automatic differentiation for the joint optimization of the layout of the micro-patterned filter array as well as the reconstructor. We explore the achievable compression ratio for different numbers of filter passbands, number of scanning frames, and filter layouts using data collected by the Hyperscout instrument. We show resulting instrument designs that take snapshot measurements without losing significant information while reducing the data volume, acquisition time, or detector space by a factor of 40 as compared to classic, dense sampling. The joint optimization of a compressive hyperspectral imager design and the accompanying reconstructor provides an avenue to substantially reduce the data volume from hyperspectral imagers.Comment: 23 pages, 12 figures, published in Applied Optic

    Introductory Chapter: Recent Advances in Image Restoration

    Get PDF

    Recent Advances in Image Restoration with Applications to Real World Problems

    Get PDF
    In the past few decades, imaging hardware has improved tremendously in terms of resolution, making widespread usage of images in many diverse applications on Earth and planetary missions. However, practical issues associated with image acquisition are still affecting image quality. Some of these issues such as blurring, measurement noise, mosaicing artifacts, low spatial or spectral resolution, etc. can seriously affect the accuracy of the aforementioned applications. This book intends to provide the reader with a glimpse of the latest developments and recent advances in image restoration, which includes image super-resolution, image fusion to enhance spatial, spectral resolution, and temporal resolutions, and the generation of synthetic images using deep learning techniques. Some practical applications are also included

    Polarization image laser line extraction methods for reflective metal surfaces

    Get PDF
    In this work, we propose a novel pipeline method for laser line extraction from images with a polarization image sensor. The proposed method is specially developed for strong laser beam reflections from metal surfaces. For the pre-processing stage, we propose a demosaicing algorithm for color polarizer filter array (CPFA) sensors. This can be implemented by using either one quarter or full resolution of the sensor. In addition, we propose two methods for optimizing the information available in a 12-channel color polarization image: The first method, is based on the minimum linearly polarized irradiance, and the second method, is based on the linear polarization intensity. These pre-processing, and optimization methods are combined with laser line extraction methods. The laser line extraction is done with either the Polarized Finite Impulse Response (FIR) Center Of Gravity (COG), where the laser line coordinates are computed from the filtered laser intensity distribution, or with the Polarized FIR-Peak, where the laser line coordinates are calculated from the first derivative of the filtered laser signal. The performance of the proposed algorithms is studied experimentally using a laser line scanner assembly, made of a polarization camera, and a laser line projector operating in the blue wavelength range.acceptedVersio

    Sensor Signal and Information Processing II

    Get PDF
    In the current age of information explosion, newly invented technological sensors and software are now tightly integrated with our everyday lives. Many sensor processing algorithms have incorporated some forms of computational intelligence as part of their core framework in problem solving. These algorithms have the capacity to generalize and discover knowledge for themselves and learn new information whenever unseen data are captured. The primary aim of sensor processing is to develop techniques to interpret, understand, and act on information contained in the data. The interest of this book is in developing intelligent signal processing in order to pave the way for smart sensors. This involves mathematical advancement of nonlinear signal processing theory and its applications that extend far beyond traditional techniques. It bridges the boundary between theory and application, developing novel theoretically inspired methodologies targeting both longstanding and emergent signal processing applications. The topic ranges from phishing detection to integration of terrestrial laser scanning, and from fault diagnosis to bio-inspiring filtering. The book will appeal to established practitioners, along with researchers and students in the emerging field of smart sensors processing
    corecore