391 research outputs found

    A neural joint model for entity and relation extraction from biomedical text

    Get PDF

    Hierarchical Losses and New Resources for Fine-grained Entity Typing and Linking

    Full text link
    Extraction from raw text to a knowledge base of entities and fine-grained types is often cast as prediction into a flat set of entity and type labels, neglecting the rich hierarchies over types and entities contained in curated ontologies. Previous attempts to incorporate hierarchical structure have yielded little benefit and are restricted to shallow ontologies. This paper presents new methods using real and complex bilinear mappings for integrating hierarchical information, yielding substantial improvement over flat predictions in entity linking and fine-grained entity typing, and achieving new state-of-the-art results for end-to-end models on the benchmark FIGER dataset. We also present two new human-annotated datasets containing wide and deep hierarchies which we will release to the community to encourage further research in this direction: MedMentions, a collection of PubMed abstracts in which 246k mentions have been mapped to the massive UMLS ontology; and TypeNet, which aligns Freebase types with the WordNet hierarchy to obtain nearly 2k entity types. In experiments on all three datasets we show substantial gains from hierarchy-aware training.Comment: ACL 201

    Deep Neural Architectures for End-to-End Relation Extraction

    Get PDF
    The rapid pace of scientific and technological advancements has led to a meteoric growth in knowledge, as evidenced by a sharp increase in the number of scholarly publications in recent years. PubMed, for example, archives more than 30 million biomedical articles across various domains and covers a wide range of topics including medicine, pharmacy, biology, and healthcare. Social media and digital journalism have similarly experienced their own accelerated growth in the age of big data. Hence, there is a compelling need for ways to organize and distill the vast, fragmented body of information (often unstructured in the form of natural human language) so that it can be assimilated, reasoned about, and ultimately harnessed. Relation extraction is an important natural language task toward that end. In relation extraction, semantic relationships are extracted from natural human language in the form of (subject, object, predicate) triples such that subject and object are mentions of discrete concepts and predicate indicates the type of relation between them. The difficulty of relation extraction becomes clear when we consider the myriad of ways the same relation can be expressed in natural language. Much of the current works in relation extraction assume that entities are known at extraction time, thus treating entity recognition as an entirely separate and independent task. However, recent studies have shown that entity recognition and relation extraction, when modeled together as interdependent tasks, can lead to overall improvements in extraction accuracy. When modeled in such a manner, the task is referred to as end-to-end relation extraction. In this work, we present four studies that introduce incrementally sophisticated architectures designed to tackle the task of end-to-end relation extraction. In the first study, we present a pipeline approach for extracting protein-protein interactions as affected by particular mutations. The pipeline system makes use of recurrent neural networks for protein detection, lexicons for gene normalization, and convolutional neural networks for relation extraction. In the second study, we show that a multi-task learning framework, with parameter sharing, can achieve state-of-the-art results for drug-drug interaction extraction. At its core, the model uses graph convolutions, with a novel attention-gating mechanism, over dependency parse trees. In the third study, we present a more efficient and general-purpose end-to-end neural architecture designed around the idea of the table-filling paradigm; for an input sentence of length n, all entities and relations are extracted in a single pass of the network in an indirect fashion by populating the cells of a corresponding n by n table using metric-based features. We show that this approach excels in both the general English and biomedical domains with extraction times that are up to an order of magnitude faster compared to the prior best. In the fourth and last study, we present an architecture for relation extraction that, in addition to being end-to-end, is able to handle cross-sentence and N-ary relations. Overall, our work contributes to the advancement of modern information extraction by exploring end-to-end solutions that are fast, accurate, and generalizable to many high-value domains

    Site-Specific Rules Extraction in Precision Agriculture

    Get PDF
    El incremento sostenible en la producción alimentaria para satisfacer las necesidades de una población mundial en aumento es un verdadero reto cuando tenemos en cuenta el impacto constante de plagas y enfermedades en los cultivos. Debido a las importantes pérdidas económicas que se producen, el uso de tratamientos químicos es demasiado alto; causando contaminación del medio ambiente y resistencia a distintos tratamientos. En este contexto, la comunidad agrícola divisa la aplicación de tratamientos más específicos para cada lugar, así como la validación automática con la conformidad legal. Sin embargo, la especificación de estos tratamientos se encuentra en regulaciones expresadas en lenguaje natural. Por este motivo, traducir regulaciones a una representación procesable por máquinas está tomando cada vez más importancia en la agricultura de precisión.Actualmente, los requisitos para traducir las regulaciones en reglas formales están lejos de ser cumplidos; y con el rápido desarrollo de la ciencia agrícola, la verificación manual de la conformidad legal se torna inabordable.En esta tesis, el objetivo es construir y evaluar un sistema de extracción de reglas para destilar de manera efectiva la información relevante de las regulaciones y transformar las reglas de lenguaje natural a un formato estructurado que pueda ser procesado por máquinas. Para ello, hemos separado la extracción de reglas en dos pasos. El primero es construir una ontología del dominio; un modelo para describir los desórdenes que producen las enfermedades en los cultivos y sus tratamientos. El segundo paso es extraer información para poblar la ontología. Puesto que usamos técnicas de aprendizaje automático, implementamos la metodología MATTER para realizar el proceso de anotación de regulaciones. Una vez creado el corpus, construimos un clasificador de categorías de reglas que discierne entre obligaciones y prohibiciones; y un sistema para la extracción de restricciones en reglas, que reconoce información relevante para retener el isomorfismo con la regulación original. Para estos componentes, empleamos, entre otra técnicas de aprendizaje profundo, redes neuronales convolucionales y “Long Short- Term Memory”. Además, utilizamos como baselines algoritmos más tradicionales como “support-vector machines” y “random forests”.Como resultado, presentamos la ontología PCT-O, que ha sido alineada con otras ontologías como NCBI, PubChem, ChEBI y Wikipedia. El modelo puede ser utilizado para la identificación de desórdenes, el análisis de conflictos entre tratamientos y la comparación entre legislaciones de distintos países. Con respecto a los sistemas de extracción, evaluamos empíricamente el comportamiento con distintas métricas, pero la métrica F1 es utilizada para seleccionar los mejores sistemas. En el caso del clasificador de categorías de reglas, el mejor sistema obtiene un macro F1 de 92,77% y un F1 binario de 85,71%. Este sistema usa una red “bidirectional long short-term memory” con “word embeddings” como entrada. En relación al extractor de restricciones de reglas, el mejor sistema obtiene un micro F1 de 88,3%. Este extractor utiliza como entrada una combinación de “character embeddings” junto a “word embeddings” y una red neuronal “bidirectional long short-term memory”.<br /
    corecore