369 research outputs found

    Artificial Intelligence in Civil Infrastructure Health Monitoring—historical Perspectives, Current Trends, and Future Visions

    Get PDF
    Over the past 2 decades, the use of artificial intelligence (AI) has exponentially increased toward complete automation of structural inspection and assessment tasks. This trend will continue to rise in image processing as unmanned aerial systems (UAS) and the internet of things (IoT) markets are expected to expand at a compound annual growth rate of 57.5% and 26%, respectively, from 2021 to 2028. This paper aims to catalog the milestone development work, summarize the current research trends, and envision a few future research directions in the innovative application of AI in civil infrastructure health monitoring. A blow-by-blow account of the major technology progression in this research field is provided in a chronological order. Detailed applications, key contributions, and performance measures of each milestone publication are presented. Representative technologies are detailed to demonstrate current research trends. A road map for future research is outlined to address contemporary issues such as explainable and physics-informed AI. This paper will provide readers with a lucid memoir of the historical progress, a good sense of the current trends, and a clear vision for future research

    The 1st International Electronic Conference on Algorithms

    Get PDF
    This book presents 22 of the accepted presentations at the 1st International Electronic Conference on Algorithms which was held completely online from September 27 to October 10, 2021. It contains 16 proceeding papers as well as 6 extended abstracts. The works presented in the book cover a wide range of fields dealing with the development of algorithms. Many of contributions are related to machine learning, in particular deep learning. Another main focus among the contributions is on problems dealing with graphs and networks, e.g., in connection with evacuation planning problems

    Classification, Localization, and Quantification of Structural Damage in Concrete Structures using Convolutional Neural Networks

    Get PDF
    Applications of Machine Learning (ML) algorithms in Structural Health Monitoring (SHM) have recently become of great interest owing to their superior ability to detect damage in engineering structures. ML algorithms used in this domain are classified into two major subfields: vibration-based and image-based SHM. Traditional condition survey techniques based on visual inspection have been the most widely used for monitoring concrete structures in service. Inspectors visually evaluate defects based on experience and engineering judgment. However, this process is subjective, time-consuming, and hampered by difficult access to numerous parts of complex structures. Accordingly, the present study proposes a nearly automated inspection model based on image processing, signal processing, and deep learning for detecting defects and identifying damage locations in typically inaccessible areas of concrete structures. The work conducted in this thesis achieved excellent damage localization and classification performance and could offer a nearly automated inspection platform for the colossal backlog of ageing civil engineering structures

    New Advances in Fluid Structure Interaction

    Get PDF
    Fluid–structure interactions (FSIs) play a crucial role in the design, construction, service and maintenance of many engineering applications, e.g., aircraft, towers, pipes, offshore platforms and long-span bridges. The old Tacoma Narrows Bridge (1940) is probably one of the most infamous examples of serious accidents due to the action of FSIs. Aircraft wings and wind-turbine blades can be broken because of FSI-induced oscillations. To alleviate or eliminate these unfavorable effects, FSIs must be dealt with in ocean, coastal, offshore and marine engineering to design safe and sustainable engineering structures. In addition, the wind effects on plants and the resultant wind-induced motions are examples of FSIs in nature. To meet the objectives of progress and innovation in FSIs in various scenarios of engineering applications and control schemes, this book includes 15 research studies and collects the most recent and cutting-edge developments on these relevant issues. The topics cover different areas associated with FSIs, including wind loads, flow control, energy harvesting, buffeting and flutter, complex flow characteristics, train–bridge interactions and the application of neural networks in related fields. In summary, these complementary contributions in this publication provide a volume of recent knowledge in the growing field of FSIs

    Shallow Buried Improvised Explosive Device Detection Via Convolutional Neural Networks

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.The issue of detecting improvised explosive devices, henceforth IEDs, in rural or built-up urban environments is a persistent and serious concern for governments in the developing world. In many cases, such devices are plastic, or varied metallic objects containing rudimentary explosives, which are not visible to the naked eye and are difficult to detect autonomously. The most effective strategy for detecting land mines also happens to be the most dangerous. This paper intends to leverage the use of a Convolutional Neural Network (CNN) to aid in the discovery of such IEDs. As part of a related project, an autonomous sensor array was used to detect the devices in terrains too hazardous for a human to survey. This paper presents a CNN and its training methodology, suitable to make use of the sensor system. This convolutional neural network can accurately distinguish between a potential IED and surrounding undergrowth and natural features of the environment in real-time. The training methodology enabled the CNN to successfully recognise the IEDs with an accuracy of 98.7%, in well-lit conditions. The results are evaluated against other convolutional neural systems as well as against a deterministic algorithm, showing that the proposed CNN outperforms its competitors including the deterministic method

    Investigation of Computer Vision Concepts and Methods for Structural Health Monitoring and Identification Applications

    Get PDF
    This study presents a comprehensive investigation of methods and technologies for developing a computer vision-based framework for Structural Health Monitoring (SHM) and Structural Identification (St-Id) for civil infrastructure systems, with particular emphasis on various types of bridges. SHM is implemented on various structures over the last two decades, yet, there are some issues such as considerable cost, field implementation time and excessive labor needs for the instrumentation of sensors, cable wiring work and possible interruptions during implementation. These issues make it only viable when major investments for SHM are warranted for decision making. For other cases, there needs to be a practical and effective solution, which computer-vision based framework can be a viable alternative. Computer vision based SHM has been explored over the last decade. Unlike most of the vision-based structural identification studies and practices, which focus either on structural input (vehicle location) estimation or on structural output (structural displacement and strain responses) estimation, the proposed framework combines the vision-based structural input and the structural output from non-contact sensors to overcome the limitations given above. First, this study develops a series of computer vision-based displacement measurement methods for structural response (structural output) monitoring which can be applied to different infrastructures such as grandstands, stadiums, towers, footbridges, small/medium span concrete bridges, railway bridges, and long span bridges, and under different loading cases such as human crowd, pedestrians, wind, vehicle, etc. Structural behavior, modal properties, load carrying capacities, structural serviceability and performance are investigated using vision-based methods and validated by comparing with conventional SHM approaches. In this study, some of the most famous landmark structures such as long span bridges are utilized as case studies. This study also investigated the serviceability status of structures by using computer vision-based methods. Subsequently, issues and considerations for computer vision-based measurement in field application are discussed and recommendations are provided for better results. This study also proposes a robust vision-based method for displacement measurement using spatio-temporal context learning and Taylor approximation to overcome the difficulties of vision-based monitoring under adverse environmental factors such as fog and illumination change. In addition, it is shown that the external load distribution on structures (structural input) can be estimated by using visual tracking, and afterward load rating of a bridge can be determined by using the load distribution factors extracted from computer vision-based methods. By combining the structural input and output results, the unit influence line (UIL) of structures are extracted during daily traffic just using cameras from which the external loads can be estimated by using just cameras and extracted UIL. Finally, the condition assessment at global structural level can be achieved using the structural input and output, both obtained from computer vision approaches, would give a normalized response irrespective of the type and/or load configurations of the vehicles or human loads
    • …
    corecore