13 research outputs found

    Beef Cattle Instance Segmentation Using Mask R-Convolutional Neural Network

    Get PDF
    Maintaining the cattle farm along with the wellbeing of every heifer has been the major concern in dairy farm. A robust system is required which can tackle the problem of continuous monitoring of cows. the computer vision techniques provide a new way to understand the challenges related to the identification and welfare of the cows. This paper presents a state-of-art instance segmentation mask RCNN algorithm to train and build a model on a very challenging cow dataset that is captured during the winter season. The dataset poses many challenges such as overlapping of cows, partial occlusion, similarity between cows and background, and bad lightening. An attempt is made to improve the accuracy of the segmenter and the performance is measured after fine tuning the baseline model. The experiment result shows that fine tuning the mask RCNN algorithm helps in significantly improving the accuracy of instance segmentation of cows. this work is a contribution towards the real time monitoring of cows in cattle farm environment with the purpose of behavioural analysis of the cattle

    Computer vision algorithms as a modern tool for behavioural analysis in dairy cattle

    Get PDF
    Looking at modern dairy production, loose housing, i.e. free stalls became one of the most common practices, which, while widely implemented along with different management routines, do not always include the adjustments necessary for assuring animal welfare. The analysis of interactions occurring between cows in dairy barns and their effect on health and performance is of great importance for sustainable, animal-friendly production. The general aim of this thesis was to investigate the possibilities and limitations of computer vision approach for studying dairy cattle behaviour and interactions between animals, as well as take a first step towards the fully automated system for continuous surveillance in modern dairy barns. In the first study, a seven-point shape-model for describing a cow from the mathematical perspective was proposed and investigated. A pilot study showed that the proposed Behavioural Detector based on the developed shape-model provided a solid basis for behavioural studies in a real-life dairy barn environment. The second study investigated a classification case from the industry: how animal distribution and claw positioning in specific areas could affect the maximal load on floor elements. The results of the study provided more substantial background data for determining the dimensioning of the strength of the slats. The third study aimed to take the first step towards an automated system (so-called WatchDog) for behavioural analysis and automatic filtering of the recorded video material. The results showed that the proposed solution is capable of detecting potentially interesting scenes in video-material with the precision of 92,8%. In the fourth and final study, a state-of-the-art tracking/identification algorithm for multiple objects with near-real-time implementation in crowded scenes with varying illumination was developed and evaluated. The algorithms forming the multi-modular WatchDog system and developed during this project are the crucial stepping stone towards a fully-automated solution for continuous surveillance of health and welfare-related parameters in dairy cattle. The proposed system could also serve as evaluation/benchmark tool for modern dairy barn assessment. Keywords: dairy cattle, image analysis, Precision Livestock Farming, computer vision, deep learning, convolutional neural networks, social interactions, tracking, cow traffi

    Multi-Pig Part Detection and Association with a Fully-Convolutional Network

    Get PDF
    Computer vision systems have the potential to provide automated, non-invasive monitoring of livestock animals, however, the lack of public datasets with well-defined targets and evaluation metrics presents a significant challenge for researchers. Consequently, existing solutions often focus on achieving task-specific objectives using relatively small, private datasets. This work introduces a new dataset and method for instance-level detection of multiple pigs in group-housed environments. The method uses a single fully-convolutional neural network to detect the location and orientation of each animal, where both body part locations and pairwise associations are represented in the image space. Accompanying this method is a new dataset containing 2000 annotated images with 24,842 individually annotated pigs from 17 different locations. The proposed method achieves over 99% precision and over 96% recall when detecting pigs in environments previously seen by the network during training. To evaluate the robustness of the trained network, it is also tested on environments and lighting conditions unseen in the training set, where it achieves 91% precision and 67% recall. The dataset is publicly available for download

    Pixel-Level Deep Multi-Dimensional Embeddings for Homogeneous Multiple Object Tracking

    Get PDF
    The goal of Multiple Object Tracking (MOT) is to locate multiple objects and keep track of their individual identities and trajectories given a sequence of (video) frames. A popular approach to MOT is tracking by detection consisting of two processing components: detection (identification of objects of interest in individual frames) and data association (connecting data from multiple frames). This work addresses the detection component by introducing a method based on semantic instance segmentation, i.e., assigning labels to all visible pixels such that they are unique among different instances. Modern tracking methods often built around Convolutional Neural Networks (CNNs) and additional, explicitly-defined post-processing steps. This work introduces two detection methods that incorporate multi-dimensional embeddings. We train deep CNNs to produce easily-clusterable embeddings for semantic instance segmentation and to enable object detection through pose estimation. The use of embeddings allows the method to identify per-pixel instance membership for both tasks. Our method specifically targets applications that require long-term tracking of homogeneous targets using a stationary camera. Furthermore, this method was developed and evaluated on a livestock tracking application which presents exceptional challenges that generalized tracking methods are not equipped to solve. This is largely because contemporary datasets for multiple object tracking lack properties that are specific to livestock environments. These include a high degree of visual similarity between targets, complex physical interactions, long-term inter-object occlusions, and a fixed-cardinality set of targets. For the reasons stated above, our method is developed and tested with the livestock application in mind and, specifically, group-housed pigs are evaluated in this work. Our method reliably detects pigs in a group housed environment based on the publicly available dataset with 99% precision and 95% using pose estimation and achieves 80% accuracy when using semantic instance segmentation at 50% IoU threshold. Results demonstrate our method\u27s ability to achieve consistent identification and tracking of group-housed livestock, even in cases where the targets are occluded and despite the fact that they lack uniquely identifying features. The pixel-level embeddings used by the proposed method are thoroughly evaluated in order to demonstrate their properties and behaviors when applied to real data. Adivser: Lance C. PĂ©re

    Learning discrete word embeddings to achieve better interpretability and processing efficiency

    Full text link
    L’omniprésente utilisation des plongements de mot dans le traitement des langues naturellesest la preuve de leur utilité et de leur capacité d’adaptation a une multitude de tâches. Ce-pendant, leur nature continue est une importante limite en terme de calculs, de stockage enmémoire et d’interprétation. Dans ce travail de recherche, nous proposons une méthode pourapprendre directement des plongements de mot discrets. Notre modèle est une adaptationd’une nouvelle méthode de recherche pour base de données avec des techniques dernier crien traitement des langues naturelles comme les Transformers et les LSTM. En plus d’obtenirdes plongements nécessitant une fraction des ressources informatiques nécéssaire à leur sto-ckage et leur traitement, nos expérimentations suggèrent fortement que nos représentationsapprennent des unités de bases pour le sens dans l’espace latent qui sont analogues à desmorphèmes. Nous appelons ces unités dessememes, qui, de l’anglaissemantic morphemes,veut dire morphèmes sémantiques. Nous montrons que notre modèle a un grand potentielde généralisation et qu’il produit des représentations latentes montrant de fortes relationssémantiques et conceptuelles entre les mots apparentés.The ubiquitous use of word embeddings in Natural Language Processing is proof of theirusefulness and adaptivity to a multitude of tasks. However, their continuous nature is pro-hibitive in terms of computation, storage and interpretation. In this work, we propose amethod of learning discrete word embeddings directly. The model is an adaptation of anovel database searching method using state of the art natural language processing tech-niques like Transformers and LSTM. On top of obtaining embeddings requiring a fractionof the resources to store and process, our experiments strongly suggest that our representa-tions learn basic units of meaning in latent space akin to lexical morphemes. We call theseunitssememes, i.e., semantic morphemes. We demonstrate that our model has a greatgeneralization potential and outputs representation showing strong semantic and conceptualrelations between related words

    Mapping Acoustic and Semantic Dimensions of Auditory Perception

    Get PDF
    Auditory categorisation is a function of sensory perception which allows humans to generalise across many different sounds present in the environment and classify them into behaviourally relevant categories. These categories cover not only the variance of acoustic properties of the signal but also a wide variety of sound sources. However, it is unclear to what extent the acoustic structure of sound is associated with, and conveys, different facets of semantic category information. Whether people use such data and what drives their decisions when both acoustic and semantic information about the sound is available, also remains unknown. To answer these questions, we used the existing methods broadly practised in linguistics, acoustics and cognitive science, and bridged these domains by delineating their shared space. Firstly, we took a model-free exploratory approach to examine the underlying structure and inherent patterns in our dataset. To this end, we ran principal components, clustering and multidimensional scaling analyses. At the same time, we drew sound labels’ semantic space topography based on corpus-based word embeddings vectors. We then built an LDA model predicting class membership and compared the model-free approach and model predictions with the actual taxonomy. Finally, by conducting a series of web-based behavioural experiments, we investigated whether acoustic and semantic topographies relate to perceptual judgements. This analysis pipeline showed that natural sound categories could be successfully predicted based on the acoustic information alone and that perception of natural sound categories has some acoustic grounding. Results from our studies help to recognise the role of physical sound characteristics and their meaning in the process of sound perception and give an invaluable insight into the mechanisms governing the machine-based and human classifications

    Measuring Behavior 2018 Conference Proceedings

    Get PDF
    These proceedings contain the papers presented at Measuring Behavior 2018, the 11th International Conference on Methods and Techniques in Behavioral Research. The conference was organised by Manchester Metropolitan University, in collaboration with Noldus Information Technology. The conference was held during June 5th – 8th, 2018 in Manchester, UK. Building on the format that has emerged from previous meetings, we hosted a fascinating program about a wide variety of methodological aspects of the behavioral sciences. We had scientific presentations scheduled into seven general oral sessions and fifteen symposia, which covered a topical spread from rodent to human behavior. We had fourteen demonstrations, in which academics and companies demonstrated their latest prototypes. The scientific program also contained three workshops, one tutorial and a number of scientific discussion sessions. We also had scientific tours of our facilities at Manchester Metropolitan Univeristy, and the nearby British Cycling Velodrome. We hope this proceedings caters for many of your interests and we look forward to seeing and hearing more of your contributions

    NASA Tech Briefs, February 1993

    Get PDF
    Topics include: Communication Technology; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences

    Exploiting Cross-Lingual Representations For Natural Language Processing

    Get PDF
    Traditional approaches to supervised learning require a generous amount of labeled data for good generalization. While such annotation-heavy approaches have proven useful for some Natural Language Processing (NLP) tasks in high-resource languages (like English), they are unlikely to scale to languages where collecting labeled data is di cult and time-consuming. Translating supervision available in English is also not a viable solution, because developing a good machine translation system requires expensive to annotate resources which are not available for most languages. In this thesis, I argue that cross-lingual representations are an effective means of extending NLP tools to languages beyond English without resorting to generous amounts of annotated data or expensive machine translation. These representations can be learned in an inexpensive manner, often from signals completely unrelated to the task of interest. I begin with a review of different ways of inducing such representations using a variety of cross-lingual signals and study algorithmic approaches of using them in a diverse set of downstream tasks. Examples of such tasks covered in this thesis include learning representations to transfer a trained model across languages for document classification, assist in monolingual lexical semantics like word sense induction, identify asymmetric lexical relationships like hypernymy between words in different languages, or combining supervision across languages through a shared feature space for cross-lingual entity linking. In all these applications, the representations make information expressed in other languages available in English, while requiring minimal additional supervision in the language of interest
    corecore