404 research outputs found

    Surface and Sub-Surface Analyses for Bridge Inspection

    Get PDF
    The development of bridge inspection solutions has been discussed in the recent past. In this dissertation, significant development and improvement on the state-of-the-art in the field of bridge inspection using multiple sensors (e.g. ground penetrating radar (GPR) and visual sensor) has been proposed. In the first part of this research (discussed in chapter 3), the focus is towards developing effective and novel methods for rebar detection and localization for sub-surface bridge inspection of steel rebars. The data has been collected using Ground Penetrating Radar (GPR) sensor on real bridge decks. In this regard, a number of different approaches have been successively developed that continue to improve the state-of-the-art in this particular research area. The second part (discussed in chapter 4) of this research deals with the development of an automated system for steel bridge defect detection system using a Multi-Directional Bicycle Robot. The training data has been acquired from actual bridges in Vietnam and validation is performed on data collected using Bicycle Robot from actual bridge located in Highway-80, Lovelock, Nevada, USA. A number of different proposed methods have been discussed in chapter 4. The final chapter of the dissertation will conclude the findings from the different parts and discuss ways of improving on the existing works in the near future

    Inspection robots in oil and gas industry : a review of current solutions and future trends

    Get PDF
    With the increasing demands for energy, oil and gas companies have a demand to improve their efficiency, productivity and safety. Any potential corrosions and cracks on their production, storage or transportation facilities could cause disasters to both human society and the natural environment. Since many oil and gas assets are located in the extreme environment, there is an ongoing demand for robots to perform inspection tasks, which will be more cost-effective and safer. This paper provides a state of art review of inspection robots used in the oil and gas industry which including remotely operated vehicles (ROVs), autonomous underwater vehicles (AUVs), unmanned ground vehicles (UGVs) and unmanned aerial vehicles (UAVs). Different kinds of inspection robots are designed for inspecting different asset structures. The outcome of the review suggests that the reliable autonomous inspection UAVs and AUVs will gain interest among these robots and reliable autonomous localisation, environment mapping, intelligent control strategies, path planning and Non-Destructive Testing (NDT) technology will be the primary areas of research

    Advanced Mobile Robotics: Volume 3

    Get PDF
    Mobile robotics is a challenging field with great potential. It covers disciplines including electrical engineering, mechanical engineering, computer science, cognitive science, and social science. It is essential to the design of automated robots, in combination with artificial intelligence, vision, and sensor technologies. Mobile robots are widely used for surveillance, guidance, transportation and entertainment tasks, as well as medical applications. This Special Issue intends to concentrate on recent developments concerning mobile robots and the research surrounding them to enhance studies on the fundamental problems observed in the robots. Various multidisciplinary approaches and integrative contributions including navigation, learning and adaptation, networked system, biologically inspired robots and cognitive methods are welcome contributions to this Special Issue, both from a research and an application perspective

    A Systematic Literature Survey of Unmanned Aerial Vehicle Based Structural Health Monitoring

    Get PDF
    Unmanned Aerial Vehicles (UAVs) are being employed in a multitude of civil applications owing to their ease of use, low maintenance, affordability, high-mobility, and ability to hover. UAVs are being utilized for real-time monitoring of road traffic, providing wireless coverage, remote sensing, search and rescue operations, delivery of goods, security and surveillance, precision agriculture, and civil infrastructure inspection. They are the next big revolution in technology and civil infrastructure, and it is expected to dominate more than $45 billion market value. The thesis surveys the UAV assisted Structural Health Monitoring or SHM literature over the last decade and categorize UAVs based on their aerodynamics, payload, design of build, and its applications. Further, the thesis presents the payload product line to facilitate the SHM tasks, details the different applications of UAVs exploited in the last decade to support civil structures, and discusses the critical challenges faced in UASHM applications across various domains. Finally, the thesis presents two artificial neural network-based structural damage detection models and conducts a detailed performance evaluation on multiple platforms like edge computing and cloud computing

    Autonomous wind turbine inspection using a quadrotor

    Get PDF
    There has been explosive growth of wind farm installations in recent years due to the fact that wind energy is gaining worldwide popularity. However, the maintenance of these offshore or onshore wind turbines, especially in remote areas, remains a challenging task. In this work, vision-based autonomous wind turbine inspection using a quadrotor is designed based on realistic assumptions. Both simulation and Hardware-In-the-Loop (HIL) testing results have shown the effectiveness of the proposed approach

    Intelligent control of mobile robot with redundant manipulator & stereovision: quantum / soft computing toolkit

    Get PDF
    The task of an intelligent control system design applying soft and quantum computational intelligence technologies discussed. An example of a control object as a mobile robot with redundant robotic manipulator and stereovision introduced. Design of robust knowledge bases is performed using a developed computational intelligence – quantum / soft computing toolkit (QC/SCOptKBTM). The knowledge base self-organization process of fuzzy homogeneous regulators through the application of end-to-end IT of quantum computing described. The coordination control between the mobile robot and redundant manipulator with stereovision based on soft computing described. The general design methodology of a generalizing control unit based on the physical laws of quantum computing (quantum information-thermodynamic trade-off of control quality distribution and knowledge base self-organization goal) is considered. The modernization of the pattern recognition system based on stereo vision technology presented. The effectiveness of the proposed methodology is demonstrated in comparison with the structures of control systems based on soft computing for unforeseen control situations with sensor system

    Vision-Based Soft Mobile Robot Inspired by Silkworm Body and Movement Behavior

    Get PDF
    Designing an inexpensive, low-noise, safe for individual, mobile robot with an efficient vision system represents a challenge. This paper proposes a soft mobile robot inspired by the silkworm body structure and moving behavior. Two identical pneumatic artificial muscles (PAM) have been used to design the body of the robot by sewing the PAMs longitudinally. The proposed robot moves forward, left, and right in steps depending on the relative contraction ratio of the actuators. The connection between the two artificial muscles gives the steering performance at different air pressures of each PAM. A camera (eye) integrated into the proposed soft robot helps it to control its motion and direction. The silkworm soft robot detects a specific object and tracks it continuously. The proposed vision system is used to help with automatic tracking based on deep learning platforms with real-time live IR camera. The object detection platform, named, YOLOv3 is used effectively to solve the challenge of detecting high-speed tiny objects like Tennis balls. The model is trained with a dataset consisting of images of   Tennis balls. The work is simulated with Google Colab and then tested in real-time on an embedded device mated with a fast GPU called Jetson Nano development kit. The presented object follower robot is cheap, fast-tracking, and friendly to the environment. The system reaches a 99% accuracy rate during training and testing. Validation results are obtained and recorded to prove the effectiveness of this novel silkworm soft robot. The research contribution is designing and implementing a soft mobile robot with an effective vision system
    • …
    corecore