179 research outputs found

    Reading Scene Text in Deep Convolutional Sequences

    Full text link
    We develop a Deep-Text Recurrent Network (DTRN) that regards scene text reading as a sequence labelling problem. We leverage recent advances of deep convolutional neural networks to generate an ordered high-level sequence from a whole word image, avoiding the difficult character segmentation problem. Then a deep recurrent model, building on long short-term memory (LSTM), is developed to robustly recognize the generated CNN sequences, departing from most existing approaches recognising each character independently. Our model has a number of appealing properties in comparison to existing scene text recognition methods: (i) It can recognise highly ambiguous words by leveraging meaningful context information, allowing it to work reliably without either pre- or post-processing; (ii) the deep CNN feature is robust to various image distortions; (iii) it retains the explicit order information in word image, which is essential to discriminate word strings; (iv) the model does not depend on pre-defined dictionary, and it can process unknown words and arbitrary strings. Codes for the DTRN will be available.Comment: To appear in the 13th AAAI Conference on Artificial Intelligence (AAAI-16), 201

    End-to-end Audiovisual Speech Activity Detection with Bimodal Recurrent Neural Models

    Full text link
    Speech activity detection (SAD) plays an important role in current speech processing systems, including automatic speech recognition (ASR). SAD is particularly difficult in environments with acoustic noise. A practical solution is to incorporate visual information, increasing the robustness of the SAD approach. An audiovisual system has the advantage of being robust to different speech modes (e.g., whisper speech) or background noise. Recent advances in audiovisual speech processing using deep learning have opened opportunities to capture in a principled way the temporal relationships between acoustic and visual features. This study explores this idea proposing a \emph{bimodal recurrent neural network} (BRNN) framework for SAD. The approach models the temporal dynamic of the sequential audiovisual data, improving the accuracy and robustness of the proposed SAD system. Instead of estimating hand-crafted features, the study investigates an end-to-end training approach, where acoustic and visual features are directly learned from the raw data during training. The experimental evaluation considers a large audiovisual corpus with over 60.8 hours of recordings, collected from 105 speakers. The results demonstrate that the proposed framework leads to absolute improvements up to 1.2% under practical scenarios over a VAD baseline using only audio implemented with deep neural network (DNN). The proposed approach achieves 92.7% F1-score when it is evaluated using the sensors from a portable tablet under noisy acoustic environment, which is only 1.0% lower than the performance obtained under ideal conditions (e.g., clean speech obtained with a high definition camera and a close-talking microphone).Comment: Submitted to Speech Communicatio

    Convolutional RNN: an Enhanced Model for Extracting Features from Sequential Data

    Get PDF
    Traditional convolutional layers extract features from patches of data by applying a non-linearity on an affine function of the input. We propose a model that enhances this feature extraction process for the case of sequential data, by feeding patches of the data into a recurrent neural network and using the outputs or hidden states of the recurrent units to compute the extracted features. By doing so, we exploit the fact that a window containing a few frames of the sequential data is a sequence itself and this additional structure might encapsulate valuable information. In addition, we allow for more steps of computation in the feature extraction process, which is potentially beneficial as an affine function followed by a non-linearity can result in too simple features. Using our convolutional recurrent layers we obtain an improvement in performance in two audio classification tasks, compared to traditional convolutional layers. Tensorflow code for the convolutional recurrent layers is publicly available in https://github.com/cruvadom/Convolutional-RNN

    Convolutional Recurrent Neural Networks for Polyphonic Sound Event Detection

    Get PDF
    Sound events often occur in unstructured environments where they exhibit wide variations in their frequency content and temporal structure. Convolutional neural networks (CNN) are able to extract higher level features that are invariant to local spectral and temporal variations. Recurrent neural networks (RNNs) are powerful in learning the longer term temporal context in the audio signals. CNNs and RNNs as classifiers have recently shown improved performances over established methods in various sound recognition tasks. We combine these two approaches in a Convolutional Recurrent Neural Network (CRNN) and apply it on a polyphonic sound event detection task. We compare the performance of the proposed CRNN method with CNN, RNN, and other established methods, and observe a considerable improvement for four different datasets consisting of everyday sound events.Comment: Accepted for IEEE Transactions on Audio, Speech and Language Processing, Special Issue on Sound Scene and Event Analysi
    • …
    corecore