4,374 research outputs found

    A fast algorithm for computing distance spectrum of convolutional codes

    Get PDF
    New rate-compatible convolutional (RCC) codes with high constraint lengths and a wide range of code rates are presented. These new codes originate from rate 1/4 optimum distance spectrum (ODS) convolutional parent encoders with constraint lengths 7-10. Low rate encoders (rates 115 down to 1/10) are found by a nested search, and high rate encoders (rates above 1/4) are found by rate-compatible puncturing. The new codes form rate-compatible code families more powerful and flexible than those previously presented. It is shown that these codes are almost as good as the existing optimum convolutional codes of the same fates. The effects of varying the design parameters of the rate-compatible punctured convolutional (RCPC) codes, i.e., the parent encoder rate, the puncturing period, and the constraint length, are also examined. The new codes are then applied to a multicode direct-sequence code-division multiple-access (DS-CDMA) system and are shown to provide good performance and rate-matching capabilities. The results, which are evaluated in terms of the efficiency for Gaussian and Rayleigh fading channels, show that the system efficiency increases with decreasing code rat

    On BICM receivers for TCM transmission

    Get PDF
    Recent results have shown that the performance of bit-interleaved coded modulation (BICM) using convolutional codes in nonfading channels can be significantly improved when the interleaver takes a trivial form (BICM-T), i.e., when it does not interleave the bits at all. In this paper, we give a formal explanation for these results and show that BICM-T is in fact the combination of a TCM transmitter and a BICM receiver. To predict the performance of BICM-T, a new type of distance spectrum for convolutional codes is introduced, analytical bounds based on this spectrum are developed, and asymptotic approximations are also presented. It is shown that the minimum distance of the code is not the relevant optimization criterion for BICM-T. Optimal convolutional codes for different constrain lengths are tabulated and asymptotic gains of about 2 dB are obtained. These gains are found to be the same as those obtained by Ungerboeck's one-dimensional trellis coded modulation (1D-TCM), and therefore, in nonfading channels, BICM-T is shown to be asymptotically as good as 1D-TCM.Comment: Submitted to the IEEE Transactions on Communication

    On Optimal TCM Encoders

    Get PDF
    An asymptotically optimal trellis-coded modulation (TCM) encoder requires the joint design of the encoder and the binary labeling of the constellation. Since analytical approaches are unknown, the only available solution is to perform an exhaustive search over the encoder and the labeling. For large constellation sizes and/or many encoder states, however, an exhaustive search is unfeasible. Traditional TCM designs overcome this problem by using a labeling that follows the set-partitioning principle and by performing an exhaustive search over the encoders. In this paper we study binary labelings for TCM and show how they can be grouped into classes, which considerably reduces the search space in a joint design. For 8-ary constellations, the number of different binary labelings that must be tested is reduced from 8!=40320 to 240. For the particular case of an 8-ary pulse amplitude modulation constellation, this number is further reduced to 120 and for 8-ary phase shift keying to only 30. An algorithm to generate one labeling in each class is also introduced. Asymptotically optimal TCM encoders are tabulated which are up to 0.3 dB better than the previously best known encoders

    Multi-dimensional modulation codes for fading channel

    Get PDF
    Some new codes are presented which have good performance on Rician fading channel with small decoding complexities. A new M-way partition chain is proposed for the L x MPSK (L less than or equal to M) signal set which maximizes the intra-set distance of each subset at each partition level. Based on this partition chain, a class of asymptotical optimum codes was found. For M = 4, these codes have both large symbol distances and product distances. Multi-level coding scheme allows to construct a code by hand such that the code meets some desired parameters, e.g., symbol distance, product distance, etc. In design of a multi-level code, all factors were considered which affect the performance and complexity of the code, such as, the decoding scheme, decoding complexity, and performance under the decoding scheme, e.g., if the multi-stage decoding scheme is used, the performance degradation due to the suboptimum decoding is taken into consideration. The performance for most of the presented codes was simulated on Rayleigh fading channel, and the results show that these codes have good performance with small decoding complexities

    EXIT Chart Based Joint Code-Rate and Spreading-Factor Optimisation of Single-Carrier Interleave Division Multiple Access

    No full text
    Abstract—In this paper, we consider the joint code-rate and spreading-factor optimisation of turbo-style iterative joint detection and decoding assisted single-carrier interleave division multiple access (SC-IDMA) systems using different-rate convolutional codes and Extrinsic Information Transfer (EXIT) charts, when communicating over Additive White Gaussian Noise (AWGN) channels. More explicitly, we study the extrinsic information exchange between two serial concatenated components and maximise the number of users supported by the SC-IDMA system under the constraint of a fixed bandwidth expansion factor, while maintaining a predefined Bit Error Ratio (BER) versus Eb/N0 performance. We found that an optimum coderate and spreading-factor combination can be found for the SC-IDMA system at low Eb/N0 values, where maintaining a low BER inevitably requires the employment of channel coding. By contrast, at high Eb/N0 the system performs best, when no channel coding is used, i.e. DS-spreading is the only means of bandwidth expansion
    corecore