124 research outputs found

    Multiscale spatial-spectral convolutional network with image-based framework for hyperspectral imagery classification.

    Get PDF
    Jointly using spatial and spectral information has been widely applied to hyperspectral image (HSI) classification. Especially, convolutional neural networks (CNN) have gained attention in recent years due to their detailed representation of features. However, most of CNN-based HSI classification methods mainly use patches as input classifier. This limits the range of use for spatial neighbor information and reduces processing efficiency in training and testing. To overcome this problem, we propose an image-based classification framework that is efficient and straight forward. Based on this framework, we propose a multiscale spatial-spectral CNN for HSIs (HyMSCN) to integrate both multiple receptive fields fused features and multiscale spatial features at different levels. The fused features are exploited using a lightweight block called the multiple receptive field feature block (MRFF), which contains various types of dilation convolution. By fusing multiple receptive field features and multiscale spatial features, the HyMSCN has comprehensive feature representation for classification. Experimental results from three real hyperspectral images prove the efficiency of the proposed framework. The proposed method also achieves superior performance for HSI classification

    A High-Performance Spectral-Spatial Residual Network for Hyperspectral Image Classification with Small Training Data

    Get PDF
    In this paper, we propose a high performance Two-Stream spectral-spatial Residual Network (TSRN) for hyperspectral image classification. The first spectral residual network (sRN) stream is used to extract spectral characteristics, and the second spatial residual network (saRN) stream is concurrently used to extract spatial features. The sRN uses 1D convolutional layers to fit the spectral data structure, while the saRN uses 2D convolutional layers to match the hyperspectral spatial data structure. Furthermore, each convolutional layer is preceded by a Batch Normalization (BN) layer that works as a regularizer to speed up the training process and to improve the accuracy. We conducted experiments on three well-known hyperspectral datasets, and we compare our results with five contemporary methods across various sizes of training samples. The experimental results show that the proposed architecture can be trained with small size datasets and outperforms the state-of-the-art methods in terms of the Overall Accuracy, Average Accuracy, Kappa Value, and training time

    Deep Intrinsic Decomposition with Adversarial Learning for Hyperspectral Image Classification

    Full text link
    Convolutional neural networks (CNNs) have been demonstrated their powerful ability to extract discriminative features for hyperspectral image classification. However, general deep learning methods for CNNs ignore the influence of complex environmental factor which enlarges the intra-class variance and decreases the inter-class variance. This multiplies the difficulty to extract discriminative features. To overcome this problem, this work develops a novel deep intrinsic decomposition with adversarial learning, namely AdverDecom, for hyperspectral image classification to mitigate the negative impact of environmental factors on classification performance. First, we develop a generative network for hyperspectral image (HyperNet) to extract the environmental-related feature and category-related feature from the image. Then, a discriminative network is constructed to distinguish different environmental categories. Finally, a environmental and category joint learning loss is developed for adversarial learning to make the deep model learn discriminative features. Experiments are conducted over three commonly used real-world datasets and the comparison results show the superiority of the proposed method. The implementation of the proposed method and other compared methods could be accessed at https://github.com/shendu-sw/Adversarial Learning Intrinsic Decomposition for the sake of reproducibility.Comment: Submitted to IEEE TI

    Spectral-spatial self-attention networks for hyperspectral image classification.

    Get PDF
    This study presents a spectral-spatial self-attention network (SSSAN) for classification of hyperspectral images (HSIs), which can adaptively integrate local features with long-range dependencies related to the pixel to be classified. Specifically, it has two subnetworks. The spatial subnetwork introduces the proposed spatial self-attention module to exploit rich patch-based contextual information related to the center pixel. The spectral subnetwork introduces the proposed spectral self-attention module to exploit the long-range spectral correlation over local spectral features. The extracted spectral and spatial features are then adaptively fused for HSI classification. Experiments conducted on four HSI datasets demonstrate that the proposed network outperforms several state-of-the-art methods

    MultiScale Spectral-Spatial Convolutional Transformer for Hyperspectral Image Classification

    Full text link
    Due to the powerful ability in capturing the global information, Transformer has become an alternative architecture of CNNs for hyperspectral image classification. However, general Transformer mainly considers the global spectral information while ignores the multiscale spatial information of the hyperspectral image. In this paper, we propose a multiscale spectral-spatial convolutional Transformer (MultiscaleFormer) for hyperspectral image classification. First, the developed method utilizes multiscale spatial patches as tokens to formulate the spatial Transformer and generates multiscale spatial representation of each band in each pixel. Second, the spatial representation of all the bands in a given pixel are utilized as tokens to formulate the spectral Transformer and generate the multiscale spectral-spatial representation of each pixel. Besides, a modified spectral-spatial CAF module is constructed in the MultiFormer to fuse cross-layer spectral and spatial information. Therefore, the proposed MultiFormer can capture the multiscale spectral-spatial information and provide better performance than most of other architectures for hyperspectral image classification. Experiments are conducted over commonly used real-world datasets and the comparison results show the superiority of the proposed method.Comment: submitted to IEEE GRS

    SC-CAN: Spectral Convolution and Channel Attention Network for wheat stress classification

    Get PDF
    Biotic and abiotic plant stress (e.g., frost, fungi, diseases) can significantly impact crop production. It is thus essential to detect such stress at an early stage before visual symptoms and damage become apparent. To this end, this paper proposes a novel deep learning method, called Spectral Convolution and Channel Attention Network (SC-CAN), which exploits the difference in spectral responses of healthy and stressed crops. The proposed SC-CAN method comprises two main modules: (i) a spectral convolution module, which consists of dilated causal convolutional layers stacked in a residual manner to capture the spectral features; (ii) a channel attention module, which consists of a global pooling layer and fully connected layers that compute inter-relationship between feature map channels before scaling them based on their importance level (attention score). Unlike standard convolution, which focuses on learning local features, the dilated convolution layers can learn both local and global features. These layers also have long receptive fields, making them suitable for capturing long dependency patterns in hyperspectral data. However, because not all feature maps produced by the dilated convolutional layers are important, we propose a channel attention module that weights the feature maps according to their importance level. We used SC-CAN to classify salt stress (i.e., abiotic stress) on four datasets (Chinese Spring (CS), Aegilops columnaris (co(CS)), Ae. speltoides auchery (sp(CS)), and Kharchia datasets) and Fusarium head blight disease (i.e., biotic stress) on Fusarium dataset. Reported experimental results show that the proposed method outperforms existing state-of-the-art techniques with an overall accuracy of 83.08%, 88.90%, 82.44%, 82.10%, and 82.78% on CS, co(CS), sp(CS), Kharchia, and Fusarium datasets, respectively

    Hyperspectral Classification Based on Lightweight 3-D-CNN With Transfer Learning

    Get PDF
    Recently, hyperspectral image (HSI) classification approaches based on deep learning (DL) models have been proposed and shown promising performance. However, because of very limited available training samples and massive model parameters, DL methods may suffer from overfitting. In this paper, we propose an end-to-end 3-D lightweight convolutional neural network (CNN) (abbreviated as 3-D-LWNet) for limited samples-based HSI classification. Compared with conventional 3-D-CNN models, the proposed 3-D-LWNet has a deeper network structure, less parameters, and lower computation cost, resulting in better classification performance. To further alleviate the small sample problem, we also propose two transfer learning strategies: 1) cross-sensor strategy, in which we pretrain a 3-D model in the source HSI data sets containing a greater number of labeled samples and then transfer it to the target HSI data sets and 2) cross-modal strategy, in which we pretrain a 3-D model in the 2-D RGB image data sets containing a large number of samples and then transfer it to the target HSI data sets. In contrast to previous approaches, we do not impose restrictions over the source data sets, in which they do not have to be collected by the same sensors as the target data sets. Experiments on three public HSI data sets captured by different sensors demonstrate that our model achieves competitive performance for HSI classification compared to several state-of-the-art methodsComment: 16 pages. Accepted to IEEE Trans. Geosci. Remote Sens. Code is available at: https://github.com/hkzhang91/LWNe

    Deep Vision in Optical Imagery: From Perception to Reasoning

    Get PDF
    Deep learning has achieved extraordinary success in a wide range of tasks in computer vision field over the past years. Remote sensing data present different properties as compared to natural images/videos, due to their unique imaging technique, shooting angle, etc. For instance, hyperspectral images usually have hundreds of spectral bands, offering additional information, and the size of objects (e.g., vehicles) in remote sensing images is quite limited, which brings challenges for detection or segmentation tasks. This thesis focuses on two kinds of remote sensing data, namely hyper/multi-spectral and high-resolution images, and explores several methods to try to find answers to the following questions: - In comparison with natural images or videos in computer vision, the unique asset of hyper/multi-spectral data is their rich spectral information. But what this “additional” information brings for learning a network? And how do we take full advantage of these spectral bands? - Remote sensing images at high resolution have pretty different characteristics, bringing challenges for several tasks, for example, small object segmentation. Can we devise tailored networks for such tasks? - Deep networks have produced stunning results in a variety of perception tasks, e.g., image classification, object detection, and semantic segmentation. While the capacity to reason about relations over space is vital for intelligent species. Can a network/module with the capacity of reasoning benefit to parsing remote sensing data? To this end, a couple of networks are devised to figure out what a network learns from hyperspectral images and how to efficiently use spectral bands. In addition, a multi-task learning network is investigated for the instance segmentation of vehicles from aerial images and videos. Finally, relational reasoning modules are designed to improve semantic segmentation of aerial images
    • …
    corecore