573 research outputs found

    Deep Networks with Internal Selective Attention through Feedback Connections

    Full text link
    Traditional convolutional neural networks (CNN) are stationary and feedforward. They neither change their parameters during evaluation nor use feedback from higher to lower layers. Real brains, however, do. So does our Deep Attention Selective Network (dasNet) architecture. DasNets feedback structure can dynamically alter its convolutional filter sensitivities during classification. It harnesses the power of sequential processing to improve classification performance, by allowing the network to iteratively focus its internal attention on some of its convolutional filters. Feedback is trained through direct policy search in a huge million-dimensional parameter space, through scalable natural evolution strategies (SNES). On the CIFAR-10 and CIFAR-100 datasets, dasNet outperforms the previous state-of-the-art model.Comment: 13 pages, 3 figure

    Cross-Modal Attentional Context Learning for RGB-D Object Detection

    Full text link
    Recognizing objects from simultaneously sensed photometric (RGB) and depth channels is a fundamental yet practical problem in many machine vision applications such as robot grasping and autonomous driving. In this paper, we address this problem by developing a Cross-Modal Attentional Context (CMAC) learning framework, which enables the full exploitation of the context information from both RGB and depth data. Compared to existing RGB-D object detection frameworks, our approach has several appealing properties. First, it consists of an attention-based global context model for exploiting adaptive contextual information and incorporating this information into a region-based CNN (e.g., Fast RCNN) framework to achieve improved object detection performance. Second, our CMAC framework further contains a fine-grained object part attention module to harness multiple discriminative object parts inside each possible object region for superior local feature representation. While greatly improving the accuracy of RGB-D object detection, the effective cross-modal information fusion as well as attentional context modeling in our proposed model provide an interpretable visualization scheme. Experimental results demonstrate that the proposed method significantly improves upon the state of the art on all public benchmarks.Comment: Accept as a regular paper to IEEE Transactions on Image Processin

    Relational Long Short-Term Memory for Video Action Recognition

    Full text link
    Spatial and temporal relationships, both short-range and long-range, between objects in videos, are key cues for recognizing actions. It is a challenging problem to model them jointly. In this paper, we first present a new variant of Long Short-Term Memory, namely Relational LSTM, to address the challenge of relation reasoning across space and time between objects. In our Relational LSTM module, we utilize a non-local operation similar in spirit to the recently proposed non-local network to substitute the fully connected operation in the vanilla LSTM. By doing this, our Relational LSTM is capable of capturing long and short-range spatio-temporal relations between objects in videos in a principled way. Then, we propose a two-branch neural architecture consisting of the Relational LSTM module as the non-local branch and a spatio-temporal pooling based local branch. The local branch is utilized for capturing local spatial appearance and/or short-term motion features. The two branches are concatenated to learn video-level features from snippet-level ones which are then used for classification. Experimental results on UCF-101 and HMDB-51 datasets show that our model achieves state-of-the-art results among LSTM-based methods, while obtaining comparable performance with other state-of-the-art methods (which use not directly comparable schema). Further, on the more complex large-scale Charades dataset, we obtain a large 3.2% gain over state-of-the-art methods, verifying the effectiveness of our method in complex understanding

    Deep Discriminative Representation Learning with Attention Map for Scene Classification

    Full text link
    Learning powerful discriminative features for remote sensing image scene classification is a challenging computer vision problem. In the past, most classification approaches were based on handcrafted features. However, most recent approaches to remote sensing scene classification are based on Convolutional Neural Networks (CNNs). The de facto practice when learning these CNN models is only to use original RGB patches as input with training performed on large amounts of labeled data (ImageNet). In this paper, we show class activation map (CAM) encoded CNN models, codenamed DDRL-AM, trained using original RGB patches and attention map based class information provide complementary information to the standard RGB deep models. To the best of our knowledge, we are the first to investigate attention information encoded CNNs. Additionally, to enhance the discriminability, we further employ a recently developed object function called "center loss," which has proved to be very useful in face recognition. Finally, our framework provides attention guidance to the model in an end-to-end fashion. Extensive experiments on two benchmark datasets show that our approach matches or exceeds the performance of other methods

    Parallel Separable 3D Convolution for Video and Volumetric Data Understanding

    Full text link
    For video and volumetric data understanding, 3D convolution layers are widely used in deep learning, however, at the cost of increasing computation and training time. Recent works seek to replace the 3D convolution layer with convolution blocks, e.g. structured combinations of 2D and 1D convolution layers. In this paper, we propose a novel convolution block, Parallel Separable 3D Convolution (PmSCn), which applies m parallel streams of n 2D and one 1D convolution layers along different dimensions. We first mathematically justify the need of parallel streams (Pm) to replace a single 3D convolution layer through tensor decomposition. Then we jointly replace consecutive 3D convolution layers, common in modern network architectures, with the multiple 2D convolution layers (Cn). Lastly, we empirically show that PmSCn is applicable to different backbone architectures, such as ResNet, DenseNet, and UNet, for different applications, such as video action recognition, MRI brain segmentation, and electron microscopy segmentation. In all three applications, we replace the 3D convolution layers in state-of-the art models with PmSCn and achieve around 14% improvement in test performance and 40% reduction in model size and on average

    Multiple Attentional Pyramid Networks for Chinese Herbal Recognition

    Full text link
    Chinese herbs play a critical role in Traditional Chinese Medicine. Due to different recognition granularity, they can be recognized accurately only by professionals with much experience. It is expected that they can be recognized automatically using new techniques like machine learning. However, there is no Chinese herbal image dataset available. Simultaneously, there is no machine learning method which can deal with Chinese herbal image recognition well. Therefore, this paper begins with building a new standard Chinese-Herbs dataset. Subsequently, a new Attentional Pyramid Networks (APN) for Chinese herbal recognition is proposed, where both novel competitive attention and spatial collaborative attention are proposed and then applied. APN can adaptively model Chinese herbal images with different feature scales. Finally, a new framework for Chinese herbal recognition is proposed as a new application of APN. Experiments are conducted on our constructed dataset and validate the effectiveness of our methods.Comment: 14 pages, 8 figure

    SCAN: Self-and-Collaborative Attention Network for Video Person Re-identification

    Full text link
    Video person re-identification attracts much attention in recent years. It aims to match image sequences of pedestrians from different camera views. Previous approaches usually improve this task from three aspects, including a) selecting more discriminative frames, b) generating more informative temporal representations, and c) developing more effective distance metrics. To address the above issues, we present a novel and practical deep architecture for video person re-identification termed Self-and-Collaborative Attention Network (SCAN). It has several appealing properties. First, SCAN adopts non-parametric attention mechanism to refine the intra-sequence and inter-sequence feature representation of videos, and outputs self-and-collaborative feature representation for each video, making the discriminative frames aligned between the probe and gallery sequences.Second, beyond existing models, a generalized pairwise similarity measurement is proposed to calculate the similarity feature representations of video pairs, enabling computing the matching scores by the binary classifier. Third, a dense clip segmentation strategy is also introduced to generate rich probe-gallery pairs to optimize the model. Extensive experiments demonstrate the effectiveness of SCAN, which outperforms the best-performing baselines on iLIDS-VID, PRID2011 and MARS dataset, respectively.Comment: 10 pages, 5 figure

    MARS: Memory Attention-Aware Recommender System

    Full text link
    In this paper, we study the problem of modeling users' diverse interests. Previous methods usually learn a fixed user representation, which has a limited ability to represent distinct interests of a user. In order to model users' various interests, we propose a Memory Attention-aware Recommender System (MARS). MARS utilizes a memory component and a novel attentional mechanism to learn deep \textit{adaptive user representations}. Trained in an end-to-end fashion, MARS adaptively summarizes users' interests. In the experiments, MARS outperforms seven state-of-the-art methods on three real-world datasets in terms of recall and mean average precision. We also demonstrate that MARS has a great interpretability to explain its recommendation results, which is important in many recommendation scenarios

    Weakly-Supervised Action Localization and Action Recognition using Global-Local Attention of 3D CNN

    Full text link
    3D Convolutional Neural Network (3D CNN) captures spatial and temporal information on 3D data such as video sequences. However, due to the convolution and pooling mechanism, the information loss seems unavoidable. To improve the visual explanations and classification in 3D CNN, we propose two approaches; i) aggregate layer-wise global to local (global-local) discrete gradients using trained 3DResNext network, and ii) implement attention gating network to improve the accuracy of the action recognition. The proposed approach intends to show the usefulness of every layer termed as global-local attention in 3D CNN via visual attribution, weakly-supervised action localization, and action recognition. Firstly, the 3DResNext is trained and applied for action classification using backpropagation concerning the maximum predicted class. The gradients and activations of every layer are then up-sampled. Later, aggregation is used to produce more nuanced attention, which points out the most critical part of the predicted class's input videos. We use contour thresholding of final attention for final localization. We evaluate spatial and temporal action localization in trimmed videos using fine-grained visual explanation via 3DCam. Experimental results show that the proposed approach produces informative visual explanations and discriminative attention. Furthermore, the action recognition via attention gating on each layer produces better classification results than the baseline model

    Generalize Symbolic Knowledge With Neural Rule Engine

    Full text link
    As neural networks have dominated the state-of-the-art results in a wide range of NLP tasks, it attracts considerable attention to improve the performance of neural models by integrating symbolic knowledge. Different from existing works, this paper investigates the combination of these two powerful paradigms from the knowledge-driven side. We propose Neural Rule Engine (NRE), which can learn knowledge explicitly from logic rules and then generalize them implicitly with neural networks. NRE is implemented with neural module networks in which each module represents an action of a logic rule. The experiments show that NRE could greatly improve the generalization abilities of logic rules with a significant increase in recall. Meanwhile, the precision is still maintained at a high level
    corecore