25 research outputs found

    Hydrometeor Classification for Dual Polarization Radar Based on Multi-Sample Fusion SVM

    Get PDF
    In order to enhance the accuracy of dual polarization radar in hydrometeor classification, a hydrometeor classification algorithm based on multi-sample fusion Support Vector Machine (SVM) is proposed in this paper after considering that traditional fuzzy logic algorithm has the defect of over relying on expert experience to set parameters. The data of four polarization parameters (horizontal reflectivity factor, differential reflectivity, correlation coefficient and differential propagation phase constant) detected by the KOHX radar were taken as the feature information of hydrometeors. The dataset was collected, and the model was trained. According to the classification results of SVM model and combined with the distribution characteristics of target particles in the rainfall area, a classification system that can effectively identify four types of particles (dry snow, moderate rain, big drops and hail possibly with rain) was established This model greatly reduced the misidentification of dry snow (DS) and moderate rain (RA)) in the precipitation area, and significantly improved the overall classification effect of hydrometeors in the area. The 0.5-degree elevation scanning data of the radar at a certain time were tested, and the classification accuracy of system model was up to 97.21%. The average accuracy of other elevation scanning data was approximately 97%, which showed strong robustness

    Identifying cloud droplets beyond lidar attenuation from vertically pointing cloud radar observations using artificial neural networks

    Get PDF
    In mixed-phase clouds, the variable mass ratio between liquid water and ice as well as the spatial distribution within the cloud plays an important role in cloud lifetime, precipitation processes, and the radiation budget. Data sets of vertically pointing Doppler cloud radars and lidars provide insights into cloud properties at high temporal and spatial resolution. Cloud radars are able to penetrate multiple liquid layers and can potentially be used to expand the identification of cloud phase to the entire vertical column beyond the lidar signal attenuation height, by exploiting morphological features in cloud radar Doppler spectra that relate to the existence of supercooled liquid. We present VOODOO (reVealing supercOOled liquiD beyOnd lidar attenuatiOn), a retrieval based on deep convolutional neural networks (CNNs) mapping radar Doppler spectra to the probability of the presence of cloud droplets (CD). The training of the CNN was realized using the Cloudnet processing suite as supervisor. Once trained, VOODOO yields the probability for CD directly at Cloudnet grid resolution. Long-term predictions of 18 months in total from two mid-latitudinal locations, i.e., Punta Arenas, Chile (53.1 S, 70.9 W), in the Southern Hemisphere and Leipzig, Germany (51.3 N, 12.4 E), in the Northern Hemisphere, are evaluated. Temporal and spatial agreement in cloud-droplet-bearing pixels is found for the Cloudnet classification to the VOODOO prediction. Two suitable case studies were selected, where stratiform, multi-layer, and deep mixed-phase clouds were observed. Performance analysis of VOODOO via classification-evaluating metrics reveals precision > 0.7, recall ≈ 0.7, and accuracy ≈ 0.8. Additionally, independent measurements of liquid water path (LWP) retrieved by a collocated microwave radiometer (MWR) are correlated to the adiabatic LWP, which is estimated using the temporal and spatial locations of cloud droplets from VOODOO and Cloudnet in connection with a cloud parcel model. This comparison resulted in stronger correlation for VOODOO (≈ 0.45) compared to Cloudnet (≈ 0.22) and indicates the availability of VOODOO to identify CD beyond lidar attenuation. Furthermore, the long-term statistics for 18 months of observations are presented, analyzing the performance as a function of MWR-LWP and confirming VOODOO's ability to identify cloud droplets reliably for clouds with LWP > 100 g m-2. The influence of turbulence on the predictive performance of VOODOO was also analyzed and found to be minor. A synergy of the novel approach VOODOO and Cloudnet would complement each other perfectly and is planned to be incorporated into the Cloudnet algorithm chain in the near future

    The development of an unsupervised hierarchical clustering analysis of dual-polarization weather surveillance radar observations to assess nocturnal insect abundance and diversity

    Get PDF
    This is the final version. Available on open access from Wiley via the DOI in this recordContemporary analyses of insect population trends are based, for the most part, on a large body of heterogeneous and short-term datasets of diurnal species that are representative of limited spatial domains. This makes monitoring changes in insect biomass and biodiversity difficult. What is needed is a method for monitoring that provides a consistent, high-resolution picture of insect populations through time over large areas during day and night. Here, we explore the use of X-band weather surveillance radar (WSR) for the study of local insect populations using a high-quality, multi-week time series of nocturnal moth light trapping data. Specifically, we test the hypotheses that (i) unsupervised data-driven classification algorithms can differentiate meteorological and biological phenomena, (ii) the diversity of the classes of bioscatterers are quantitatively related to the diversity of insects as measured on the ground and (iii) insect abundance measured at ground level can be predicted quantitatively based on dual-polarization Doppler WSR variables. Adapting the quasi-vertical profile analysis method and data clustering techniques developed for the analysis of hydrometeors, we demonstrate that our bioscatterer classification algorithm successfully differentiates bioscatterers from hydrometeors over a large spatial scale and at high temporal resolutions. Furthermore, our results also show a clear relationship between biological and meteorological scatterers and a link between the abundance and diversity of radar-based bioscatterer clusters and that of nocturnal aerial insects. Thus, we demonstrate the potential utility of this approach for landscape scale monitoring of biodiversity.Natural Environment Research Council (NERC)Bill and Melinda Gates Foundatio

    Application of Machine Learning to Multiple Radar Missions and Operations

    Get PDF
    This dissertation investigated the application of Machine Learning (ML) in multiple radar missions. With the increasing computational power and data availability, machine learning is becoming a convenient tool in developing radar algorithms. The overall goal of the dissertation was to improve the transportation safety. Three specific applications were studied: improving safety in the airport operations, safer air travel and safer road travel. First, in the operations around airports, lightning prediction is necessary to enhance safety of the ground handling workers. Information about the future lightning can help the workers take necessary actions to avoid lightning related injuries. The mission was to investigate the use of ML algorithms with measurements produced by an S-band weather radar to predict the lightning flash rate. This study used radar variables, single pol and dual-pol, measured throughout a year to train the machine learning algorithm. The effectiveness of dual-pol radar variables for lighting flash rate prediction was validated, and Pearson's coefficient of about 0.88 was achieved in the selected ML scheme. Second, the detection of High Ice Water Content (HIWC),which impact the jet engine operations at high altitudes, is necessary to improve the safety of air transportation. The detection information help aircraft pilots avoid hazardous HIWC condition. The mission was to detect HIWC using ML and the X-band airborne weather radar. Due to the insufficiency of measured data, radar data was synthesized using an end-to-end airborne weather system simulator. The simulation employed the information about ice crystals' particle size distribution (PSDs), axial ratios, and orientation to generate the polarimetric radar variables. The simulated radar variables were used to train the machine learning to detect HIWC and estimate the IWC values. Pearson's coefficient of about 0.99 was achieved for this mission. The third mission included the improvement of angular resolution and explored the machine learning based target classification using an automotive radar. In an autonomous vehicle system, the classification of targets enhances the safety of ground transportation. The angular resolution was improved using Multiple Input Multiple Output (MIMO) techniques. The mission also involved classifying the targets (pedestrian vs. vehicle) using micro-Doppler features. The classification accuracy of about 94% was achieved

    Using artificial neural networks to predict riming from Doppler cloud radar observations

    Get PDF
    Riming, i.e., the accretion and freezing of super-cooled liquid water (SLW) on ice particles in mixed-phase clouds, is an important pathway for precipitation formation. Detecting and quantifying riming using ground-based cloud radar observations is of great interest; however, approaches based on measurements of the mean Doppler velocity (MDV) are unfeasible in convective and orographically influenced cloud systems. Here, we show how artificial neural networks (ANNs) can be used to predict riming using ground-based, zenith-pointing cloud radar variables as input features. ANNs are a versatile means to extract relations from labeled data sets, which contain input features along with the expected target values. Training data are extracted from a data set acquired during winter 2014 in Finland, containing both Ka-and W-band cloud radar and in situ observations of snow-fall by a Precipitation Imaging Package from which the rime mass fraction (FRPIP) is retrieved. ANNs are trained separately either on the Ka-band radar or the W-band radar data set to predict the rime fraction FRANN. We focus on two configurations of input variables. ANN 1 uses the equivalent radar reflectivity factor (Ze), MDV, the width from left to right edge of the spectrum above the noise floor (spectrum edge width - SEW), and the skewness as input features. ANN 2 only uses Ze, SEW, and skewness. The application of these two ANN configurations to case studies from different data sets demonstrates that both are able to predict strong riming (FRANN > 0.7) and yield low values (FRANNPeer reviewe

    Improving the membership functions of a fuzzy hydrometeor classifier in an X-Band weather radar system : parameter adjustments and performance validation using ground-based forward scatter sensor observations

    Get PDF
    A weather radar is a remote sensing device that measures rain by transmitting a high-energy electromagnetic signal into the atmosphere and receiving echoes that scatter back to the radar. The weather targets are referred to as hydrometeors which is a generic name for any water or ice particle in the atmosphere. Modern radar technology, especially the so-called dual-polarization technique, enables measuring a large scale of parameters describing hydrometeors' size, shape, and orientation. Based on this information, it is possible to classify the hydrometeors into classes such as rain, wet snow, dry snow, or hail. This procedure is typically done using algorithms based on fuzzy logic. Fuzzy logic is an extension of classical logic. It is capable of modeling the logical "middle ground" that is not included in classical logic by allowing truth values that are something between true and false. Membership functions are part of fuzzy systems that transform the crisp input values into fuzzy truth values. This work presents the basics of fuzzy logic and how it can be utilized in solving a classification problem. However, weather radars operate using different frequency bands in their transmitted signal. The frequency bands are denoted with letters S, C, and X, listing from the lowest frequency to the highest. The parameters of the membership functions are dependent on the used frequency band of the radar. The aim of this work is to adjust the parameters of Vaisala's fuzzy hydrometeor classification algorithm for X-band based on the old C-band specific parameters. The adjustments made in this work are based on literature references that describe the polarimetric differences of the different frequency bands and similar adjustment processes that have been carried out before for different algorithms. The performance of the algorithm after the parameter adjustments is studied by comparing real weather data from an X-band weather radar and a ground-based forward scatter sensor. Analysis is also supported by visual and quantitative comparison of the data with the old and the adjusted parameters. All in all, five different raining events were included in the analysis. The results of the analysis show that after the adjustment, the number of snow bins incorrectly classified as liquid rain was significantly decreased and the algorithm behavior was more consistent in detecting hail and graupel

    A Network of X-Band Meteorological Radars to Support the Motorway System (Campania Region Meteorological Radar Network Project)

    Get PDF
    he transport sector and road infrastructures are very sensitive to the issues connected to the atmospheric conditions. The latter constitute a source of relevant risk, especially for roads running in mountainous areas, where a wide spectrum of meteorological phenomena, such as rain showers, snow, hail, wind gusts and ice, threatens drivers’ safety. In such contexts, to face out critical situations it is essential to develop a monitoring system that is able to capillary surveil specific sectors or very small basins, providing real time information that may be crucial to preserve lives and assets. In this work, we present the results of the “Campania Region Meteorological Radar Network”, which is focused on the development of X-band radar-based meteorological products that can support highway traffic management and maintenance. The X-band measurements provided by two single-polarization systems, properly integrated with the observations supplied by disdrometers and conventional automatic weather stations, were involved in the following main tasks: (i) the development of a radar composite product; (ii) the devise of a probability of hail index; (iii) the real time discrimination of precipitation type (rain, mixed and snow); (iv) the development of a snowfall rate estimator. The performance of these products was assessed for two case studies, related to a relevant summer hailstorm (which occurred on 1 August 2020) and to a winter precipitation event (which occurred on 13 February 2021). In both cases, the X-band radar-based tools proved to be useful for the stakeholders involved in the management of highway traffic, providing a reliable characterization of precipitation events and of the fast-changing vertical structure of convective cells

    Modelling Precipitation Intensities from X-Band Radar Measurements Using Artificial Neural Networks—A Feasibility Study for the Bavarian Oberland Region

    Get PDF
    Radar data may potentially provide valuable information for precipitation quantification, especially in regions with a sparse network of in situ observations or in regions with complex topography. Therefore, our aim is to conduct a feasibility study to quantify precipitation intensities based on radar measurements and additional meteorological variables. Beyond the well-established Z–R relationship for the quantification, this study employs Artificial Neural Networks (ANNs) in different settings and analyses their performance. For this purpose, the radar data of a station in Upper Bavaria (Germany) is used and analysed for its performance in quantifying in situ observations. More specifically, the effects of time resolution, time offsets in the input data, and meteorological factors on the performance of the ANNs are investigated. It is found that ANNs that use actual reflectivity as only input are outperforming the standard Z–R relationship in reproducing ground precipitation. This is reflected by an increase in correlation between modelled and observed data from 0.67 (Z–R) to 0.78 (ANN) for hourly and 0.61 to 0.86, respectively, for 10 min time resolution. However, the focus of this study was to investigate if model accuracy benefits from additional input features. It is shown that an expansion of the input feature space by using time-lagged reflectivity with lags up to two and additional meteorological variables such as temperature, relative humidity, and sunshine duration significantly increases model performance. Thus, overall, it is shown that a systematic predictor screening and the correspondent extension of the input feature space substantially improves the performance of a simple Neural Network model. For instance, air temperature and relative humidity provide valuable additional input information. It is concluded that model performance is dependent on all three ingredients: time resolution, time lagged information, and additional meteorological input features. Taking all of these into account, the model performance can be optimized to a correlation of 0.9 and minimum model bias of 0.002 between observed and modelled precipitation data even with a simple ANN architecture

    Modelling precipitation intensities from x-band radar measurements using Artificial Neural Networks — a feasibility study for the Bavarian Oberland region

    Get PDF
    Radar data may potentially provide valuable information for precipitation quantification, especially in regions with a sparse network of in situ observations or in regions with complex topography. Therefore, our aim is to conduct a feasibility study to quantify precipitation intensities based on radar measurements and additional meteorological variables. Beyond the well-established Z–R relationship for the quantification, this study employs Artificial Neural Networks (ANNs) in different settings and analyses their performance. For this purpose, the radar data of a station in Upper Bavaria (Germany) is used and analysed for its performance in quantifying in situ observations. More specifically, the effects of time resolution, time offsets in the input data, and meteorological factors on the performance of the ANNs are investigated. It is found that ANNs that use actual reflectivity as only input are outperforming the standard Z–R relationship in reproducing ground precipitation. This is reflected by an increase in correlation between modelled and observed data from 0.67 (Z–R) to 0.78 (ANN) for hourly and 0.61 to 0.86, respectively, for 10 min time resolution. However, the focus of this study was to investigate if model accuracy benefits from additional input features. It is shown that an expansion of the input feature space by using time-lagged reflectivity with lags up to two and additional meteorological variables such as temperature, relative humidity, and sunshine duration significantly increases model performance. Thus, overall, it is shown that a systematic predictor screening and the correspondent extension of the input feature space substantially improves the performance of a simple Neural Network model. For instance, air temperature and relative humidity provide valuable additional input information. It is concluded that model performance is dependent on all three ingredients: time resolution, time lagged information, and additional meteorological input features. Taking all of these into account, the model performance can be optimized to a correlation of 0.9 and minimum model bias of 0.002 between observed and modelled precipitation data even with a simple ANN architecture
    corecore