38 research outputs found

    Identification of interstitial lung diseases using deep learning

    Get PDF
    The advanced medical imaging provides various advantages to both the patients and the healthcare providers. Medical Imaging truly helps the doctor to determine the inconveniences in a human body and empowers them to make better choices. Deep learning has an important role in the medical field especially for medical image analysis today. It is an advanced technique in the machine learning concept which can be used to get efficient output than using any other previous techniques. In the anticipated work deep learning is used to find the presence of interstitial lung diseases (ILD) by analyzing high-resolution computed tomography (HRCT) images and identifying the ILD category. The efficiency of the diagnosis of ILD through clinical history is less than 20%. Currently, an open chest biopsy is the best way of confirming the presence of ILD. HRCT images can be used effectively to avoid open chest biopsy and improve accuracy. In this proposed work multi-label classification is done for 17 different categories of ILD. The average accuracy of 95% is obtained by extracting features with the help of a convolutional neural network (CNN) architecture called SmallerVGGNet

    Quantitative imaging analysis:challenges and potentials

    Get PDF

    Innovations in thoracic imaging:CT, radiomics, AI and x-ray velocimetry

    Get PDF
    In recent years, pulmonary imaging has seen enormous progress, with the introduction, validation and implementation of new hardware and software. There is a general trend from mere visual evaluation of radiological images to quantification of abnormalities and biomarkers, and assessment of 'non visual' markers that contribute to establishing diagnosis or prognosis. Important catalysts to these developments in thoracic imaging include new indications (like computed tomography [CT] lung cancer screening) and the COVID-19 pandemic. This review focuses on developments in CT, radiomics, artificial intelligence (AI) and x-ray velocimetry for imaging of the lungs. Recent developments in CT include the potential for ultra-low-dose CT imaging for lung nodules, and the advent of a new generation of CT systems based on photon-counting detector technology. Radiomics has demonstrated potential towards predictive and prognostic tasks particularly in lung cancer, previously not achievable by visual inspection by radiologists, exploiting high dimensional patterns (mostly texture related) on medical imaging data. Deep learning technology has revolutionized the field of AI and as a result, performance of AI algorithms is approaching human performance for an increasing number of specific tasks. X-ray velocimetry integrates x-ray (fluoroscopic) imaging with unique image processing to produce quantitative four dimensional measurement of lung tissue motion, and accurate calculations of lung ventilation

    Novel image processing methods for characterizing lung structure and function

    Get PDF
    corecore