425 research outputs found

    The role of earth observation in an integrated deprived area mapping “system” for low-to-middle income countries

    Get PDF
    Urbanization in the global South has been accompanied by the proliferation of vast informal and marginalized urban areas that lack access to essential services and infrastructure. UN-Habitat estimates that close to a billion people currently live in these deprived and informal urban settlements, generally grouped under the term of urban slums. Two major knowledge gaps undermine the efforts to monitor progress towards the corresponding sustainable development goal (i.e., SDG 11—Sustainable Cities and Communities). First, the data available for cities worldwide is patchy and insufficient to differentiate between the diversity of urban areas with respect to their access to essential services and their specific infrastructure needs. Second, existing approaches used to map deprived areas (i.e., aggregated household data, Earth observation (EO), and community-driven data collection) are mostly siloed, and, individually, they often lack transferability and scalability and fail to include the opinions of different interest groups. In particular, EO-based-deprived area mapping approaches are mostly top-down, with very little attention given to ground information and interaction with urban communities and stakeholders. Existing top-down methods should be complemented with bottom-up approaches to produce routinely updated, accurate, and timely deprived area maps. In this review, we first assess the strengths and limitations of existing deprived area mapping methods. We then propose an Integrated Deprived Area Mapping System (IDeAMapS) framework that leverages the strengths of EO- and community-based approaches. The proposed framework offers a way forward to map deprived areas globally, routinely, and with maximum accuracy to support SDG 11 monitoring and the needs of different interest groups

    Fine-grained Population Mapping from Coarse Census Counts and Open Geodata

    Full text link
    Fine-grained population maps are needed in several domains, like urban planning, environmental monitoring, public health, and humanitarian operations. Unfortunately, in many countries only aggregate census counts over large spatial units are collected, moreover, these are not always up-to-date. We present POMELO, a deep learning model that employs coarse census counts and open geodata to estimate fine-grained population maps with 100m ground sampling distance. Moreover, the model can also estimate population numbers when no census counts at all are available, by generalizing across countries. In a series of experiments for several countries in sub-Saharan Africa, the maps produced with POMELOare in good agreement with the most detailed available reference counts: disaggregation of coarse census counts reaches R2 values of 85-89%; unconstrained prediction in the absence of any counts reaches 48-69%

    Monitoring land use in cities using satellite imagery and deep learning

    Get PDF
    Over time, cities expand their physical footprint on land and new cities emerge. The shape of the built environment can affect several domains which are policy relevant, such as carbon emissions, housing affordability, infrastructure costs, and access to services. This study lays a methodological basis for the monitoring and consistent comparison of land use across OECD cities. An advanced form of deep learning, namely the U-Net model, is used to classify land cover and land use in EC-ESA satellite imagery for 2021. This complements conventional statistical data by monitoring large surfaces of land efficiently and in near real-time. In specific, following the availability of detailed data for model training, built-up areas in residential or business-related use are mapped and analysed for 687 European metropolitan areas, as a case application. Recent urban expansion’s speed and shape are explored, as well as the potential for assessing land use in cities beyond Europe

    Population mapping in informal settlements with high-resolution satellite imagery and equitable ground-truth

    Get PDF
    We propose a generalizable framework for the population estimation of dense, informal settlements in low-income urban areas–so called ’slums’–using high-resolution satellite imagery. Precise population estimates are a crucial factor for efficient resource allocations by government authorities and NGO’s, for instance in medical emergencies. We utilize equitable ground-truth data, which is gathered in collaboration with local communities: Through training and community mapping, the local population contributes their unique domain knowledge, while also maintaining agency over their data. This practice allows us to avoid carrying forward potential biases into the modeling pipeline, which might arise from a less rigorous ground-truthing approach. We contextualize our approach in respect to the ongoing discussion within the machine learning community, aiming to make real-world machine learning applications more inclusive, fair and accountable. Because of the resource intensive ground-truth generation process, our training data is limited. We propose a gridded population estimation model, enabling flexible and customizable spatial resolutions. We test our pipeline on three experimental site in Nigeria, utilizing pre-trained and fine-tune vision networks to overcome data sparsity. Our findings highlight the difficulties of transferring common benchmark models to real-world tasks. We discuss this and propose steps forward

    Integrating openstreetmap data and sentinel-2 Imagery for classifying and monitoring informal settlements

    Get PDF
    Dissertation submitted in partial fulfilment of the requirements for the degree of Master of Science in Geospatial TechnologiesThe identification and monitoring of informal settlements in urban areas is an important step in developing and implementing pro-poor urban policies. Understanding when, where and who lives inside informal settlements is critical to efforts to improve their resilience. This study aims at integrating OSM data and sentinel-2 imagery for classifying and monitoring the growth of informal settlements methods to map informal areas in Kampala (Uganda) and Dar es Salaam (Tanzania) and to monitor their growth in Kampala. Three building feature characteristics of size, shape and Distance to nearest Neighbour were derived and used to cluster and classify informal areas using Hotspot Cluster analysis and ML approach on OSM buildings data. The resultant informal regions in Kampala were used with Sentinel-2 image tiles to investigate the spatiotemporal changes in informal areas using Convolutional Neural Networks (CNNs). Results from Optimized Hot Spot Analysis and Random Forest Classification show that Informal regions can be mapped based on building outline characteristics. An accuracy of 90.3% was achieved when an optimally trained CNN was executed on a test set of 2019 satellite image tiles. Predictions of informality from new datasets for the years 2016 and 2017 provided promising results on combining different open source geospatial datasets to identify, classify and monitor informal settlements

    Scalable Population Synthesis with Deep Generative Modeling

    Full text link
    Population synthesis is concerned with the generation of synthetic yet realistic representations of populations. It is a fundamental problem in the modeling of transport where the synthetic populations of micro-agents represent a key input to most agent-based models. In this paper, a new methodological framework for how to 'grow' pools of micro-agents is presented. The model framework adopts a deep generative modeling approach from machine learning based on a Variational Autoencoder (VAE). Compared to the previous population synthesis approaches, including Iterative Proportional Fitting (IPF), Gibbs sampling and traditional generative models such as Bayesian Networks or Hidden Markov Models, the proposed method allows fitting the full joint distribution for high dimensions. The proposed methodology is compared with a conventional Gibbs sampler and a Bayesian Network by using a large-scale Danish trip diary. It is shown that, while these two methods outperform the VAE in the low-dimensional case, they both suffer from scalability issues when the number of modeled attributes increases. It is also shown that the Gibbs sampler essentially replicates the agents from the original sample when the required conditional distributions are estimated as frequency tables. In contrast, the VAE allows addressing the problem of sampling zeros by generating agents that are virtually different from those in the original data but have similar statistical properties. The presented approach can support agent-based modeling at all levels by enabling richer synthetic populations with smaller zones and more detailed individual characteristics.Comment: 27 pages, 15 figures, 4 table
    corecore