374 research outputs found

    Can you tell a face from a HEVC bitstream?

    Full text link
    Image and video analytics are being increasingly used on a massive scale. Not only is the amount of data growing, but the complexity of the data processing pipelines is also increasing, thereby exacerbating the problem. It is becoming increasingly important to save computational resources wherever possible. We focus on one of the poster problems of visual analytics -- face detection -- and approach the issue of reducing the computation by asking: Is it possible to detect a face without full image reconstruction from the High Efficiency Video Coding (HEVC) bitstream? We demonstrate that this is indeed possible, with accuracy comparable to conventional face detection, by training a Convolutional Neural Network on the output of the HEVC entropy decoder

    A Convolutional Neural Network Approach for Half-Pel Interpolation in Video Coding

    Full text link
    Motion compensation is a fundamental technology in video coding to remove the temporal redundancy between video frames. To further improve the coding efficiency, sub-pel motion compensation has been utilized, which requires interpolation of fractional samples. The video coding standards usually adopt fixed interpolation filters that are derived from the signal processing theory. However, as video signal is not stationary, the fixed interpolation filters may turn out less efficient. Inspired by the great success of convolutional neural network (CNN) in computer vision, we propose to design a CNN-based interpolation filter (CNNIF) for video coding. Different from previous studies, one difficulty for training CNNIF is the lack of ground-truth since the fractional samples are actually not available. Our solution for this problem is to derive the "ground-truth" of fractional samples by smoothing high-resolution images, which is verified to be effective by the conducted experiments. Compared to the fixed half-pel interpolation filter for luma in High Efficiency Video Coding (HEVC), our proposed CNNIF achieves up to 3.2% and on average 0.9% BD-rate reduction under low-delay P configuration.Comment: International Symposium on Circuits and Systems (ISCAS) 201
    • …
    corecore