74 research outputs found

    Deep learning for EEG-based Motor Imagery classification: Accuracy-cost trade-off

    Get PDF
    Electroencephalography (EEG) datasets are often small and high dimensional, owing to cumbersome recording processes. In these conditions, powerful machine learning techniques are essential to deal with the large amount of information and overcome the curse of dimensionality. Artificial Neural Networks (ANNs) have achieved promising performance in EEG-based Brain-Computer Interface (BCI) applications, but they involve computationally intensive training algorithms and hyperparameter optimization methods. Thus, an awareness of the quality-cost trade-off, although usually overlooked, is highly beneficial. In this paper, we apply a hyperparameter optimization procedure based on Genetic Algorithms to Convolutional Neural Networks (CNNs), Feed-Forward Neural Networks (FFNNs), and Recurrent Neural Networks (RNNs), all of them purposely shallow. We compare their relative quality and energy-time cost, but we also analyze the variability in the structural complexity of networks of the same type with similar accuracies. The experimental results show that the optimization procedure improves accuracy in all models, and that CNN models with only one hidden convolutional layer can equal or slightly outperform a 6-layer Deep Belief Network. FFNN and RNN were not able to reach the same quality, although the cost was significantly lower. The results also highlight the fact that size within the same type of network is not necessarily correlated with accuracy, as smaller models can and do match, or even surpass, bigger ones in performance. In this regard, overfitting is likely a contributing factor since deep learning approaches struggle with limited training examples.Spanish Ministerio de Ciencia, Innovacion y Universidades PGC2018-098813-B-C31 PGC2018-098813-B-C32 PSI201565848-

    Deep learning for EEG-based Motor Imagery classification: Accuracy-cost trade-off

    Get PDF
    Electroencephalography (EEG) datasets are often small and high dimensional, owing to cumbersome recording processes. In these conditions, powerful machine learning techniques are essential to deal with the large amount of information and overcome the curse of dimensionality. Artificial Neural Networks (ANNs) have achieved promising performance in EEG-based Brain-Computer Interface (BCI) applications, but they involve computationally intensive training algorithms and hyperparameter optimization methods. Thus, an awareness of the quality-cost trade-off, although usually overlooked, is highly beneficial. In this paper, we apply a hyperparameter optimization procedure based on Genetic Algorithms to Convolutional Neural Networks (CNNs), Feed-Forward Neural Networks (FFNNs), and Recurrent Neural Networks (RNNs), all of them purposely shallow. We compare their relative quality and energy-time cost, but we also analyze the variability in the structural complexity of networks of the same type with similar accuracies. The experimental results show that the optimization procedure improves accuracy in all models, and that CNN models with only one hidden convolutional layer can equal or slightly outperform a 6-layer Deep Belief Network. FFNN and RNN were not able to reach the same quality, although the cost was significantly lower. The results also highlight the fact that size within the same type of network is not necessarily correlated with accuracy, as smaller models can and do match, or even surpass, bigger ones in performance. In this regard, overfitting is likely a contributing factor since deep learning approaches struggle with limited training examples

    A distributed and energy‑efficient KNN for EEG classification with dynamic money‑saving policy in heterogeneous clusters

    Get PDF
    Universidad de Granada/CBUASpanish Ministry of Science, Innovation, and Universities under Grants PGC2018-098813-B-C31,PID2022-137461NB-C32ERDF fund. Funding for open access charge: University of Granada/ CBU

    ΠœΠ΅Ρ‚ΠΎΠ΄Ρ‹ классификации Π­Π­Π“-ΠΏΠ°Ρ‚Ρ‚Π΅Ρ€Π½ΠΎΠ² Π²ΠΎΠΎΠ±Ρ€Π°ΠΆΠ°Π΅ΠΌΡ‹Ρ… Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΉ

    Get PDF
    Π Π°ΡΡΠΌΠ°Ρ‚Ρ€ΠΈΠ²Π°ΡŽΡ‚ΡΡ Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ пСрспСктивныС ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ классификации элСктроэнцСфалографичСских сигналов ΠΏΡ€ΠΈ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ΅ Π½Π΅ΠΈΠ½Π²Π°Π·ΠΈΠ²Π½Ρ‹Ρ… интСрфСйсов ΠΌΠΎΠ·Π³β€“ΠΊΠΎΠΌΠΏΡŒΡŽΡ‚Π΅Ρ€ ΠΈ тСорСтичСских ΠΏΠΎΠ΄Ρ…ΠΎΠ΄ΠΎΠ² для ΡƒΡΠΏΠ΅ΡˆΠ½ΠΎΠΉ классификации элСктроэнцСфалографичСских ΠΏΠ°Ρ‚Ρ‚Π΅Ρ€Π½ΠΎΠ². ΠŸΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ΡΡ ΠΎΠ±Π·ΠΎΡ€ Ρ€Π°Π±ΠΎΡ‚, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‰ΠΈΡ… для классификации Ρ€ΠΈΠΌΠ°Π½ΠΎΠ²Ρƒ Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΡŽ, ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ Π³Π»ΡƒΠ±ΠΎΠΊΠΎΠ³ΠΎ обучСния ΠΈ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Π΅ Π²Π°Ρ€ΠΈΠ°Π½Ρ‚Ρ‹ ΠΏΡ€Π΅Π΄ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ ΠΈ кластСризации элСктроэнцСфалографичСских сигналов, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€ ΠΎΠ±Ρ‰Π΅Π³ΠΎ пространствСнного Ρ„ΠΈΠ»ΡŒΡ‚Ρ€Π°. Π‘Ρ€Π΅Π΄ΠΈ ΠΏΡ€ΠΎΡ‡ΠΈΡ… ΠΏΠΎΠ΄Ρ…ΠΎΠ΄ΠΎΠ² ΠΏΡ€Π΅Π΄ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° элСктроэнцСфалографичСских сигналов с ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ ΠΎΠ±Ρ‰Π΅Π³ΠΎ пространствСнного Ρ„ΠΈΠ»ΡŒΡ‚Ρ€Π° часто ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ΡΡ ΠΊΠ°ΠΊ Π² ΠΎΡ„Π»Π°ΠΉΠ½, Ρ‚Π°ΠΊ ΠΈ Π² ΠΎΠ½Π»Π°ΠΉΠ½ Ρ€Π΅ΠΆΠΈΠΌΠ°Ρ…. Богласно исслСдованиям послСдних Π»Π΅Ρ‚ сочСтаниС ΠΎΠ±Ρ‰Π΅Π³ΠΎ пространствСнного Ρ„ΠΈΠ»ΡŒΡ‚Ρ€Π°, Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ³ΠΎ дискриминантного Π°Π½Π°Π»ΠΈΠ·Π°, ΠΌΠ΅Ρ‚ΠΎΠ΄Π° ΠΎΠΏΠΎΡ€Π½Ρ‹Ρ… Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² ΠΈ Π½Π΅ΠΉΡ€ΠΎΠ½Π½ΠΎΠΉ сСти с ΠΎΠ±Ρ€Π°Ρ‚Π½Ρ‹ΠΌ распространСниСм ошибки ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ»ΠΎ Π΄ΠΎΡΡ‚ΠΈΠ³Π½ΡƒΡ‚ΡŒ 91% точности ΠΏΡ€ΠΈ двухклассовой классификации с ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠΉ связью Π² Π²ΠΈΠ΄Π΅ управлСния экзоскСлСтом. ИсслСдований ΠΏΠΎ использованию Ρ€ΠΈΠΌΠ°Π½ΠΎΠ²ΠΎΠΉ Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ Π² условиях ΠΎΠ½Π»Π°ΠΉΠ½ ΠΎΡ‡Π΅Π½ΡŒ ΠΌΠ°Π»ΠΎ, ΠΈ Π½Π° Π΄Π°Π½Π½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚ Π½Π°ΠΈΠ»ΡƒΡ‡ΡˆΠ°Ρ Ρ‚ΠΎΡ‡Π½ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ двухклассовой классификации составляСт 69,3%. ΠŸΡ€ΠΈ этом Π² ΠΎΡ„Π»Π°ΠΉΠ½ тСстировании срСдний ΠΏΡ€ΠΎΡ†Π΅Π½Ρ‚ классификации Π² рассмотрСнных ΡΡ‚Π°Ρ‚ΡŒΡΡ… для ΠΏΠΎΠ΄Ρ…ΠΎΠ΄ΠΎΠ² с ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ ΠΎΠ±Ρ‰Π΅Π³ΠΎ пространствСнного Ρ„ΠΈΠ»ΡŒΡ‚Ρ€Π° – 77,5Β±5,8%, сСтСй Π³Π»ΡƒΠ±ΠΎΠΊΠΎΠ³ΠΎ обучСния – 81,7Β±4,7%, Ρ€ΠΈΠΌΠ°Π½ΠΎΠ²ΠΎΠΉ Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ – 90,2Β±6,6%. Π—Π° счСт Π½Π΅Π»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Ρ… ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹, основанныС Π½Π° Ρ€ΠΈΠΌΠ°Π½ΠΎΠ²ΠΎΠΉ Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ, Π° Ρ‚Π°ΠΊΠΆΠ΅ Π½Π° ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠΈ Π³Π»ΡƒΠ±ΠΎΠΊΠΈΡ… Π½Π΅ΠΉΡ€ΠΎΠ½Π½Ρ‹Ρ… сСтСй слоТной Π°Ρ€Ρ…ΠΈΡ‚Π΅ΠΊΡ‚ΡƒΡ€Ρ‹, ΠΎΠ±Π΅ΡΠΏΠ΅Ρ‡ΠΈΠ²Π°ΡŽΡ‚ Π±ΠΎΠ»ΡŒΡˆΡƒΡŽ Ρ‚ΠΎΡ‡Π½ΠΎΡΡ‚ΡŒ ΠΈ ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡ‚ΡŒ ΠΊ ΠΈΠ·Π²Π»Π΅Ρ‡Π΅Π½ΠΈΡŽ ΠΏΠΎΠ»Π΅Π·Π½ΠΎΠΉ ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΈ ΠΈΠ· сигнала ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с Π»ΠΈΠ½Π΅ΠΉΠ½Ρ‹ΠΌ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΠΎΠ±Ρ‰Π΅Π³ΠΎ пространствСнного Ρ„ΠΈΠ»ΡŒΡ‚Ρ€Π°. Однако Π² условиях Ρ€Π΅Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ Π²Π°ΠΆΠ½Π° Π½Π΅ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Ρ‚ΠΎΡ‡Π½ΠΎΡΡ‚ΡŒ, Π½ΠΎ ΠΈ минимальная врСмСнная Π·Π°Π΄Π΅Ρ€ΠΆΠΊΠ°. Π—Π΄Π΅ΡΡŒ прСимущСство ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ Π·Π° ΠΏΠΎΠ΄Ρ…ΠΎΠ΄Π°ΠΌΠΈ с использованиСм прСобразования ΠΎΠ±Ρ‰Π΅Π³ΠΎ пространствСнного Ρ„ΠΈΠ»ΡŒΡ‚Ρ€Π° ΠΈ Ρ€ΠΈΠΌΠ°Π½ΠΎΠ²ΠΎΠΉ Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ с Π²Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ Π·Π°Π΄Π΅Ρ€ΠΆΠΊΠΎΠΉ ΠΌΠ΅Π½Π΅Π΅ 500 мс

    ΠœΠ΅Ρ‚ΠΎΠ΄Ρ‹ классификации Π­Π­Π“-ΠΏΠ°Ρ‚Ρ‚Π΅Ρ€Π½ΠΎΠ² Π²ΠΎΠΎΠ±Ρ€Π°ΠΆΠ°Π΅ΠΌΡ‹Ρ… Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΉ

    Get PDF
    The review focuses on the most promising methods for classifying EEG signals for non-invasive BCIs and theoretical approaches for the successful classification of EEG patterns. The paper provides an overview of articles using Riemannian geometry, deep learning methods and various options for preprocessing and "clustering" EEG signals, for example, common-spatial pattern (CSP). Among other approaches, pre-processing of EEG signals using CSP is often used, both offline and online. The combination of CSP, linear discriminant analysis, support vector machine and neural network (BPNN) made it possible to achieve 91% accuracy for binary classification with exoskeleton control as a feedback. There is very little work on the use of Riemannian geometry online and the best accuracy achieved so far for a binary classification problem is 69.3% in the work. At the same time, in offline testing, the average percentage of correct classification in the considered articles for approaches with CSP – 77.5 Β± 5.8%, deep learning networks – 81.7 Β± 4.7%, Riemannian geometry – 90.2 Β± 6.6%. Due to nonlinear transformations, Riemannian geometry-based approaches and complex deep neural networks provide higher accuracy and better extract of useful information from raw EEG recordings rather than linear CSP transformation. However, in real-time setup, not only accuracy is important, but also a minimum time delay. Therefore, approaches using the CSP transformation and Riemannian geometry with a time delay of less than 500 ms may be in the future advantage.Π Π°ΡΡΠΌΠ°Ρ‚Ρ€ΠΈΠ²Π°ΡŽΡ‚ΡΡ Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ пСрспСктивныС ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ классификации элСктроэнцСфалографичСских сигналов ΠΏΡ€ΠΈ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ΅ Π½Π΅ΠΈΠ½Π²Π°Π·ΠΈΠ²Π½Ρ‹Ρ… интСрфСйсов ΠΌΠΎΠ·Π³β€“ΠΊΠΎΠΌΠΏΡŒΡŽΡ‚Π΅Ρ€ ΠΈ тСорСтичСских ΠΏΠΎΠ΄Ρ…ΠΎΠ΄ΠΎΠ² для ΡƒΡΠΏΠ΅ΡˆΠ½ΠΎΠΉ классификации элСктроэнцСфалографичСских ΠΏΠ°Ρ‚Ρ‚Π΅Ρ€Π½ΠΎΠ². ΠŸΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ΡΡ ΠΎΠ±Π·ΠΎΡ€ Ρ€Π°Π±ΠΎΡ‚, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‰ΠΈΡ… для классификации Ρ€ΠΈΠΌΠ°Π½ΠΎΠ²Ρƒ Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΡŽ, ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ Π³Π»ΡƒΠ±ΠΎΠΊΠΎΠ³ΠΎ обучСния ΠΈ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Π΅ Π²Π°Ρ€ΠΈΠ°Π½Ρ‚Ρ‹ ΠΏΡ€Π΅Π΄ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ ΠΈ кластСризации элСктроэнцСфалографичСских сигналов, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€ ΠΎΠ±Ρ‰Π΅Π³ΠΎ пространствСнного Ρ„ΠΈΠ»ΡŒΡ‚Ρ€Π°. Π‘Ρ€Π΅Π΄ΠΈ ΠΏΡ€ΠΎΡ‡ΠΈΡ… ΠΏΠΎΠ΄Ρ…ΠΎΠ΄ΠΎΠ² ΠΏΡ€Π΅Π΄ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° элСктроэнцСфалографичСских сигналов с ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ ΠΎΠ±Ρ‰Π΅Π³ΠΎ пространствСнного Ρ„ΠΈΠ»ΡŒΡ‚Ρ€Π° часто ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ΡΡ ΠΊΠ°ΠΊ Π² ΠΎΡ„Π»Π°ΠΉΠ½, Ρ‚Π°ΠΊ ΠΈ Π² ΠΎΠ½Π»Π°ΠΉΠ½ Ρ€Π΅ΠΆΠΈΠΌΠ°Ρ…. Богласно исслСдованиям послСдних Π»Π΅Ρ‚ сочСтаниС ΠΎΠ±Ρ‰Π΅Π³ΠΎ пространствСнного Ρ„ΠΈΠ»ΡŒΡ‚Ρ€Π°, Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ³ΠΎ дискриминантного Π°Π½Π°Π»ΠΈΠ·Π°, ΠΌΠ΅Ρ‚ΠΎΠ΄Π° ΠΎΠΏΠΎΡ€Π½Ρ‹Ρ… Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² ΠΈ Π½Π΅ΠΉΡ€ΠΎΠ½Π½ΠΎΠΉ сСти с ΠΎΠ±Ρ€Π°Ρ‚Π½Ρ‹ΠΌ распространСниСм ошибки ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ»ΠΎ Π΄ΠΎΡΡ‚ΠΈΠ³Π½ΡƒΡ‚ΡŒ 91% точности ΠΏΡ€ΠΈ двухклассовой классификации с ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠΉ связью Π² Π²ΠΈΠ΄Π΅ управлСния экзоскСлСтом. ИсслСдований ΠΏΠΎ использованию Ρ€ΠΈΠΌΠ°Π½ΠΎΠ²ΠΎΠΉ Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ Π² условиях ΠΎΠ½Π»Π°ΠΉΠ½ ΠΎΡ‡Π΅Π½ΡŒ ΠΌΠ°Π»ΠΎ, ΠΈ Π½Π° Π΄Π°Π½Π½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚ Π½Π°ΠΈΠ»ΡƒΡ‡ΡˆΠ°Ρ Ρ‚ΠΎΡ‡Π½ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ двухклассовой классификации составляСт 69,3%. ΠŸΡ€ΠΈ этом Π² ΠΎΡ„Π»Π°ΠΉΠ½ тСстировании срСдний ΠΏΡ€ΠΎΡ†Π΅Π½Ρ‚ классификации Π² рассмотрСнных ΡΡ‚Π°Ρ‚ΡŒΡΡ… для ΠΏΠΎΠ΄Ρ…ΠΎΠ΄ΠΎΠ² с ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ ΠΎΠ±Ρ‰Π΅Π³ΠΎ пространствСнного Ρ„ΠΈΠ»ΡŒΡ‚Ρ€Π° – 77,5Β±5,8%, сСтСй Π³Π»ΡƒΠ±ΠΎΠΊΠΎΠ³ΠΎ обучСния – 81,7Β±4,7%, Ρ€ΠΈΠΌΠ°Π½ΠΎΠ²ΠΎΠΉ Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ – 90,2Β±6,6%. Π—Π° счСт Π½Π΅Π»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Ρ… ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹, основанныС Π½Π° Ρ€ΠΈΠΌΠ°Π½ΠΎΠ²ΠΎΠΉ Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ, Π° Ρ‚Π°ΠΊΠΆΠ΅ Π½Π° ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠΈ Π³Π»ΡƒΠ±ΠΎΠΊΠΈΡ… Π½Π΅ΠΉΡ€ΠΎΠ½Π½Ρ‹Ρ… сСтСй слоТной Π°Ρ€Ρ…ΠΈΡ‚Π΅ΠΊΡ‚ΡƒΡ€Ρ‹, ΠΎΠ±Π΅ΡΠΏΠ΅Ρ‡ΠΈΠ²Π°ΡŽΡ‚ Π±ΠΎΠ»ΡŒΡˆΡƒΡŽ Ρ‚ΠΎΡ‡Π½ΠΎΡΡ‚ΡŒ ΠΈ ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡ‚ΡŒ ΠΊ ΠΈΠ·Π²Π»Π΅Ρ‡Π΅Π½ΠΈΡŽ ΠΏΠΎΠ»Π΅Π·Π½ΠΎΠΉ ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΈ ΠΈΠ· сигнала ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с Π»ΠΈΠ½Π΅ΠΉΠ½Ρ‹ΠΌ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΠΎΠ±Ρ‰Π΅Π³ΠΎ пространствСнного Ρ„ΠΈΠ»ΡŒΡ‚Ρ€Π°. Однако Π² условиях Ρ€Π΅Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ Π²Π°ΠΆΠ½Π° Π½Π΅ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Ρ‚ΠΎΡ‡Π½ΠΎΡΡ‚ΡŒ, Π½ΠΎ ΠΈ минимальная врСмСнная Π·Π°Π΄Π΅Ρ€ΠΆΠΊΠ°. Π—Π΄Π΅ΡΡŒ прСимущСство ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ Π·Π° ΠΏΠΎΠ΄Ρ…ΠΎΠ΄Π°ΠΌΠΈ с использованиСм прСобразования ΠΎΠ±Ρ‰Π΅Π³ΠΎ пространствСнного Ρ„ΠΈΠ»ΡŒΡ‚Ρ€Π° ΠΈ Ρ€ΠΈΠΌΠ°Π½ΠΎΠ²ΠΎΠΉ Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ с Π²Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ Π·Π°Π΄Π΅Ρ€ΠΆΠΊΠΎΠΉ ΠΌΠ΅Π½Π΅Π΅ 500 мс

    EEG-based brain-computer interfaces using motor-imagery: techniques and challenges.

    Get PDF
    Electroencephalography (EEG)-based brain-computer interfaces (BCIs), particularly those using motor-imagery (MI) data, have the potential to become groundbreaking technologies in both clinical and entertainment settings. MI data is generated when a subject imagines the movement of a limb. This paper reviews state-of-the-art signal processing techniques for MI EEG-based BCIs, with a particular focus on the feature extraction, feature selection and classification techniques used. It also summarizes the main applications of EEG-based BCIs, particularly those based on MI data, and finally presents a detailed discussion of the most prevalent challenges impeding the development and commercialization of EEG-based BCIs
    • …
    corecore