5,317 research outputs found

    Convolutional Neural Networks Analyzed via Convolutional Sparse Coding

    Full text link
    Convolutional neural networks (CNN) have led to many state-of-the-art results spanning through various fields. However, a clear and profound theoretical understanding of the forward pass, the core algorithm of CNN, is still lacking. In parallel, within the wide field of sparse approximation, Convolutional Sparse Coding (CSC) has gained increasing attention in recent years. A theoretical study of this model was recently conducted, establishing it as a reliable and stable alternative to the commonly practiced patch-based processing. Herein, we propose a novel multi-layer model, ML-CSC, in which signals are assumed to emerge from a cascade of CSC layers. This is shown to be tightly connected to CNN, so much so that the forward pass of the CNN is in fact the thresholding pursuit serving the ML-CSC model. This connection brings a fresh view to CNN, as we are able to attribute to this architecture theoretical claims such as uniqueness of the representations throughout the network, and their stable estimation, all guaranteed under simple local sparsity conditions. Lastly, identifying the weaknesses in the above pursuit scheme, we propose an alternative to the forward pass, which is connected to deconvolutional, recurrent and residual networks, and has better theoretical guarantees

    Deep Component Analysis via Alternating Direction Neural Networks

    Full text link
    Despite a lack of theoretical understanding, deep neural networks have achieved unparalleled performance in a wide range of applications. On the other hand, shallow representation learning with component analysis is associated with rich intuition and theory, but smaller capacity often limits its usefulness. To bridge this gap, we introduce Deep Component Analysis (DeepCA), an expressive multilayer model formulation that enforces hierarchical structure through constraints on latent variables in each layer. For inference, we propose a differentiable optimization algorithm implemented using recurrent Alternating Direction Neural Networks (ADNNs) that enable parameter learning using standard backpropagation. By interpreting feed-forward networks as single-iteration approximations of inference in our model, we provide both a novel theoretical perspective for understanding them and a practical technique for constraining predictions with prior knowledge. Experimentally, we demonstrate performance improvements on a variety of tasks, including single-image depth prediction with sparse output constraints

    Adversarial Noise Attacks of Deep Learning Architectures -- Stability Analysis via Sparse Modeled Signals

    Full text link
    Despite their impressive performance, deep convolutional neural networks (CNNs) have been shown to be sensitive to small adversarial perturbations. These nuisances, which one can barely notice, are powerful enough to fool sophisticated and well performing classifiers, leading to ridiculous misclassification results. In this paper we analyze the stability of state-of-the-art deep-learning classification machines to adversarial perturbations, where we assume that the signals belong to the (possibly multi-layer) sparse representation model. We start with convolutional sparsity and then proceed to its multi-layered version, which is tightly connected to CNNs. Our analysis links between the stability of the classification to noise and the underlying structure of the signal, quantified by the sparsity of its representation under a fixed dictionary. In addition, we offer similar stability theorems for two practical pursuit algorithms, which are posed as two different deep-learning architectures - the layered Thresholding and the layered Basis Pursuit. Our analysis establishes the better robustness of the later to adversarial attacks. We corroborate these theoretical results by numerical experiments on three datasets: MNIST, CIFAR-10 and CIFAR-100

    Convolutional Neural Networks Analyzed via Inverse Problem Theory and Sparse Representations

    Full text link
    Inverse problems in imaging such as denoising, deblurring, superresolution (SR) have been addressed for many decades. In recent years, convolutional neural networks (CNNs) have been widely used for many inverse problem areas. Although their indisputable success, CNNs are not mathematically validated as to how and what they learn. In this paper, we prove that during training, CNN elements solve for inverse problems which are optimum solutions stored as CNN neuron filters. We discuss the necessity of mutual coherence between CNN layer elements in order for a network to converge to the optimum solution. We prove that required mutual coherence can be provided by the usage of residual learning and skip connections. We have set rules over training sets and depth of networks for better convergence, i.e. performance.Comment: PostPrint IET Signal Processing Journa

    Deep Convolutional Compressed Sensing for LiDAR Depth Completion

    Full text link
    In this paper we consider the problem of estimating a dense depth map from a set of sparse LiDAR points. We use techniques from compressed sensing and the recently developed Alternating Direction Neural Networks (ADNNs) to create a deep recurrent auto-encoder for this task. Our architecture internally performs an algorithm for extracting multi-level convolutional sparse codes from the input which are then used to make a prediction. Our results demonstrate that with only two layers and 1800 parameters we are able to out perform all previously published results, including deep networks with orders of magnitude more parameters

    Deep Convolutional Neural Network and Sparse Least Squares Migration

    Full text link
    We recast the forward pass of a multilayered convolutional neural network (CNN) as the solution to the problem of sparse least squares migration (LSM). The CNN filters and feature maps are shown to be analogous, but not equivalent, to the migration Green's functions and the quasi-reflectivity distribution, respectively. This provides a physical interpretation of the filters and feature maps in deep CNN in terms of the operators for seismic imaging. Motivated by the connection between sparse LSM and CNN, we propose the neural network version of sparse LSM. Unlike the standard LSM method that finds the optimal reflectivity image, neural network LSM (NNLSM) finds both the optimal quasi-reflectivity image and the quasi-migration Green's functions. These quasi-migration-Green's functions are also denoted as the convolutional filters in a CNN and are similar to migration Green's functions. The advantage of NNLSM over standard LSM is that its computational cost is significantly less and it can be used for denoising coherent and incoherent noise in migration images. Its disadvantage is that the NNLSM quasi-reflectivity image is only an approximation to the actual reflectivity distribution. However, the quasi-reflectivity image can be used as a superresolution attribute image for high-resolution delineation of geologic bodies.Comment: 25 pages, 13 figure

    An ETF view of Dropout regularization

    Full text link
    Dropout is a popular regularization technique in deep learning. Yet, the reason for its success is still not fully understood. This paper provides a new interpretation of Dropout from a frame theory perspective. By drawing a connection to recent developments in analog channel coding, we suggest that for a certain family of autoencoders with a linear encoder, optimizing the encoder with dropout regularization leads to an equiangular tight frame (ETF). Since this optimization is non-convex, we add another regularization that promotes such structures by minimizing the cross-correlation between filters in the network. We demonstrate its applicability in convolutional and fully connected layers in both feed-forward and recurrent networks. All these results suggest that there is indeed a relationship between dropout and ETF structure of the regularized linear operations.Comment: Accepted to BMVC 202

    Accelerating Convolutional Neural Networks via Activation Map Compression

    Full text link
    The deep learning revolution brought us an extensive array of neural network architectures that achieve state-of-the-art performance in a wide variety of Computer Vision tasks including among others, classification, detection and segmentation. In parallel, we have also been observing an unprecedented demand in computational and memory requirements, rendering the efficient use of neural networks in low-powered devices virtually unattainable. Towards this end, we propose a three-stage compression and acceleration pipeline that sparsifies, quantizes and entropy encodes activation maps of Convolutional Neural Networks. Sparsification increases the representational power of activation maps leading to both acceleration of inference and higher model accuracy. Inception-V3 and MobileNet-V1 can be accelerated by as much as 1.6×1.6\times with an increase in accuracy of 0.38%0.38\% and 0.54%0.54\% on the ImageNet and CIFAR-10 datasets respectively. Quantizing and entropy coding the sparser activation maps lead to higher compression over the baseline, reducing the memory cost of the network execution. Inception-V3 and MobileNet-V1 activation maps, quantized to 1616 bits, are compressed by as much as 6×6\times with an increase in accuracy of 0.36%0.36\% and 0.55%0.55\% respectively

    Image Super-Resolution Using Deep Convolutional Networks

    Full text link
    We propose a deep learning method for single image super-resolution (SR). Our method directly learns an end-to-end mapping between the low/high-resolution images. The mapping is represented as a deep convolutional neural network (CNN) that takes the low-resolution image as the input and outputs the high-resolution one. We further show that traditional sparse-coding-based SR methods can also be viewed as a deep convolutional network. But unlike traditional methods that handle each component separately, our method jointly optimizes all layers. Our deep CNN has a lightweight structure, yet demonstrates state-of-the-art restoration quality, and achieves fast speed for practical on-line usage. We explore different network structures and parameter settings to achieve trade-offs between performance and speed. Moreover, we extend our network to cope with three color channels simultaneously, and show better overall reconstruction quality.Comment: 14 pages, 14 figures, journa

    Deep Residual Auto-Encoders for Expectation Maximization-inspired Dictionary Learning

    Full text link
    We introduce a neural-network architecture, termed the constrained recurrent sparse auto-encoder (CRsAE), that solves convolutional dictionary learning problems, thus establishing a link between dictionary learning and neural networks. Specifically, we leverage the interpretation of the alternating-minimization algorithm for dictionary learning as an approximate Expectation-Maximization algorithm to develop auto-encoders that enable the simultaneous training of the dictionary and regularization parameter (ReLU bias). The forward pass of the encoder approximates the sufficient statistics of the E-step as the solution to a sparse coding problem, using an iterative proximal gradient algorithm called FISTA. The encoder can be interpreted either as a recurrent neural network or as a deep residual network, with two-sided ReLU non-linearities in both cases. The M-step is implemented via a two-stage back-propagation. The first stage relies on a linear decoder applied to the encoder and a norm-squared loss. It parallels the dictionary update step in dictionary learning. The second stage updates the regularization parameter by applying a loss function to the encoder that includes a prior on the parameter motivated by Bayesian statistics. We demonstrate in an image-denoising task that CRsAE learns Gabor-like filters, and that the EM-inspired approach for learning biases is superior to the conventional approach. In an application to recordings of electrical activity from the brain, we demonstrate that CRsAE learns realistic spike templates and speeds up the process of identifying spike times by 900x compared to algorithms based on convex optimization
    • …
    corecore