5,223 research outputs found

    Graduate Catalog of Studies, 2023-2024

    Get PDF

    Self-supervised learning for transferable representations

    Get PDF
    Machine learning has undeniably achieved remarkable advances thanks to large labelled datasets and supervised learning. However, this progress is constrained by the labour-intensive annotation process. It is not feasible to generate extensive labelled datasets for every problem we aim to address. Consequently, there has been a notable shift in recent times toward approaches that solely leverage raw data. Among these, self-supervised learning has emerged as a particularly powerful approach, offering scalability to massive datasets and showcasing considerable potential for effective knowledge transfer. This thesis investigates self-supervised representation learning with a strong focus on computer vision applications. We provide a comprehensive survey of self-supervised methods across various modalities, introducing a taxonomy that categorises them into four distinct families while also highlighting practical considerations for real-world implementation. Our focus thenceforth is on the computer vision modality, where we perform a comprehensive benchmark evaluation of state-of-the-art self supervised models against many diverse downstream transfer tasks. Our findings reveal that self-supervised models often outperform supervised learning across a spectrum of tasks, albeit with correlations weakening as tasks transition beyond classification, particularly for datasets with distribution shifts. Digging deeper, we investigate the influence of data augmentation on the transferability of contrastive learners, uncovering a trade-off between spatial and appearance-based invariances that generalise to real-world transformations. This begins to explain the differing empirical performances achieved by self-supervised learners on different downstream tasks, and it showcases the advantages of specialised representations produced with tailored augmentation. Finally, we introduce a novel self-supervised pre-training algorithm for object detection, aligning pre-training with downstream architecture and objectives, leading to reduced localisation errors and improved label efficiency. In conclusion, this thesis contributes a comprehensive understanding of self-supervised representation learning and its role in enabling effective transfer across computer vision tasks

    Graduate Catalog of Studies, 2023-2024

    Get PDF

    Human-machine interactions based on hand gesture recognition using deep learning methods

    Get PDF
    Human interaction with computers and other machines is becoming an increasingly important and relevant topic in the modern world. Hand gesture recognition technology is an innovative approach to managing computers and electronic devices that allows users to interact with technology through gestures and hand movements. This article presents deep learning methods that allow you to efficiently process and classify hand gestures and hand gesture recognition technologies for interacting with computers. This paper discusses modern deep learning methods such as convolutional neural networks (CNN) and recurrent neural networks (RNN), which show excellent results in gesture recognition tasks. Next, the development and implementation of a human-machine interaction system based on hand gesture recognition is discussed. System architectures are described, as well as technical and practical aspects of their application. In conclusion, the article summarizes the research results and outlines the prospects for the development of hand gesture recognition technology to improve human-machine interaction. The advantages and limitations of the technology are analyzed, as well as possible areas of its application in the future

    Multidisciplinary perspectives on Artificial Intelligence and the law

    Get PDF
    This open access book presents an interdisciplinary, multi-authored, edited collection of chapters on Artificial Intelligence (‘AI’) and the Law. AI technology has come to play a central role in the modern data economy. Through a combination of increased computing power, the growing availability of data and the advancement of algorithms, AI has now become an umbrella term for some of the most transformational technological breakthroughs of this age. The importance of AI stems from both the opportunities that it offers and the challenges that it entails. While AI applications hold the promise of economic growth and efficiency gains, they also create significant risks and uncertainty. The potential and perils of AI have thus come to dominate modern discussions of technology and ethics – and although AI was initially allowed to largely develop without guidelines or rules, few would deny that the law is set to play a fundamental role in shaping the future of AI. As the debate over AI is far from over, the need for rigorous analysis has never been greater. This book thus brings together contributors from different fields and backgrounds to explore how the law might provide answers to some of the most pressing questions raised by AI. An outcome of the Católica Research Centre for the Future of Law and its interdisciplinary working group on Law and Artificial Intelligence, it includes contributions by leading scholars in the fields of technology, ethics and the law.info:eu-repo/semantics/publishedVersio

    Efficient Visual Computing with Camera RAW Snapshots

    Get PDF
    Conventional cameras capture image irradiance (RAW) on a sensor and convert it to RGB images using an image signal processor (ISP). The images can then be used for photography or visual computing tasks in a variety of applications, such as public safety surveillance and autonomous driving. One can argue that since RAW images contain all the captured information, the conversion of RAW to RGB using an ISP is not necessary for visual computing. In this paper, we propose a novel ρ-Vision framework to perform high-level semantic understanding and low-level compression using RAW images without the ISP subsystem used for decades. Considering the scarcity of available RAW image datasets, we first develop an unpaired CycleR2R network based on unsupervised CycleGAN to train modular unrolled ISP and inverse ISP (invISP) models using unpaired RAW and RGB images. We can then flexibly generate simulated RAW images (simRAW) using any existing RGB image dataset and finetune different models originally trained in the RGB domain to process real-world camera RAW images. We demonstrate object detection and image compression capabilities in RAW-domain using RAW-domain YOLOv3 and RAW image compressor (RIC) on camera snapshots. Quantitative results reveal that RAW-domain task inference provides better detection accuracy and compression efficiency compared to that in the RGB domain. Furthermore, the proposed ρ-Vision generalizes across various camera sensors and different task-specific models. An added benefit of employing the ρ-Vision is the elimination of the need for ISP, leading to potential reductions in computations and processing times

    Modern computing: Vision and challenges

    Get PDF
    Over the past six decades, the computing systems field has experienced significant transformations, profoundly impacting society with transformational developments, such as the Internet and the commodification of computing. Underpinned by technological advancements, computer systems, far from being static, have been continuously evolving and adapting to cover multifaceted societal niches. This has led to new paradigms such as cloud, fog, edge computing, and the Internet of Things (IoT), which offer fresh economic and creative opportunities. Nevertheless, this rapid change poses complex research challenges, especially in maximizing potential and enhancing functionality. As such, to maintain an economical level of performance that meets ever-tighter requirements, one must understand the drivers of new model emergence and expansion, and how contemporary challenges differ from past ones. To that end, this article investigates and assesses the factors influencing the evolution of computing systems, covering established systems and architectures as well as newer developments, such as serverless computing, quantum computing, and on-device AI on edge devices. Trends emerge when one traces technological trajectory, which includes the rapid obsolescence of frameworks due to business and technical constraints, a move towards specialized systems and models, and varying approaches to centralized and decentralized control. This comprehensive review of modern computing systems looks ahead to the future of research in the field, highlighting key challenges and emerging trends, and underscoring their importance in cost-effectively driving technological progress

    Collaborative Neural Rendering using Anime Character Sheets

    Full text link
    Drawing images of characters with desired poses is an essential but laborious task in anime production. Assisting artists to create is a research hotspot in recent years. In this paper, we present the Collaborative Neural Rendering (CoNR) method, which creates new images for specified poses from a few reference images (AKA Character Sheets). In general, the diverse hairstyles and garments of anime characters defies the employment of universal body models like SMPL, which fits in most nude human shapes. To overcome this, CoNR uses a compact and easy-to-obtain landmark encoding to avoid creating a unified UV mapping in the pipeline. In addition, the performance of CoNR can be significantly improved when referring to multiple reference images, thanks to feature space cross-view warping in a carefully designed neural network. Moreover, we have collected a character sheet dataset containing over 700,000 hand-drawn and synthesized images of diverse poses to facilitate research in this area. Our code and demo are available at https://github.com/megvii-research/IJCAI2023-CoNR.Comment: The first three authors contribute equally. In the Arts and Creativity Track of IJCAI202
    corecore