80 research outputs found

    Exploring the Impact of Learning Paradigms on Network Generalization: A Multi-Center IMT Study

    Get PDF
    The intima-media thickness (IMT) is an important parameter for evaluating cardiovascular disease risk and progression and can be extracted from B-mode longitudinal ultrasound images of the carotid artery. Despite its clinical significance, inter- and intra-operator variability in IMT measurement is a challenge due to subjective factors. Therefore, automatic and semi-automatic approaches based on heuristic methods and deep neural networks have been proposed to reduce the variability in IMT measurement. However, the inter- and intra- operator variability still remains an issue as it affects the quality and diversity of ground truth (GT) data used for training deep learning models. In this study, the authors evaluate the performance of different learning paradigms using different GTs on a multi-center IMT dataset. A recent segmentation network, ConvNeXt, is trained on a dataset of 2576 B-mode longitudinal ultrasound images of the carotid artery, using different GT annotations and learning paradigms. The method is then tested on an external dataset of 448 images from four different centers for which three manual segmentations were available. The results show how the use of different GT annotations and learning paradigms can enhance the generalization ability of deep learning models, demonstrating the importance of selecting appropriate GT data and learning strategies in achieving robust and reliable solutions. The study highlights the significance of incorporating heuristic methods in the training process of deep learning models to enhance the accuracy and consistency of IMT measurement, thus enabling more precise cardiovascular disease risk assessment

    Temporal Convolution Networks for Real-Time Abdominal Fetal Aorta Analysis with Ultrasound

    Full text link
    The automatic analysis of ultrasound sequences can substantially improve the efficiency of clinical diagnosis. In this work we present our attempt to automate the challenging task of measuring the vascular diameter of the fetal abdominal aorta from ultrasound images. We propose a neural network architecture consisting of three blocks: a convolutional layer for the extraction of imaging features, a Convolution Gated Recurrent Unit (C-GRU) for enforcing the temporal coherence across video frames and exploiting the temporal redundancy of a signal, and a regularized loss function, called \textit{CyclicLoss}, to impose our prior knowledge about the periodicity of the observed signal. We present experimental evidence suggesting that the proposed architecture can reach an accuracy substantially superior to previously proposed methods, providing an average reduction of the mean squared error from 0.31mm20.31 mm^2 (state-of-art) to 0.09mm20.09 mm^2, and a relative error reduction from 8.1%8.1\% to 5.3%5.3\%. The mean execution speed of the proposed approach of 289 frames per second makes it suitable for real time clinical use.Comment: 10 pages, 2 figure

    Deep learning for the detection and characterization of the carotid artery in ultrasound imaging

    Get PDF
    Treballs finals del Màster de Fonaments de Ciència de Dades, Facultat de matemàtiques, Universitat de Barcelona, Any: 2018, Tutor: Laura Igual Muñoz[en] Atherosclerosis is the main process causing most Cardio Vascular (CV) diseases. The measurement of Intima Media Thickness (IMT) in artery ultrasound images can be used to detect the presence of atherosclerotic plaques, which may appear in several territories of the artery. Moreover, it is well known that disruption of atherosclerotic plaque plays a crucial role in the pathogenesis of CV events. Several works have tried to automatize the detection of the IMT and the classification of the plaque by its composition. Traditionally, the methods used in the literature are semi-automatic. Furthermore, very little work has been done using Deep Learning approaches in order to solve this problems. In this thesis, we explore the effectiveness of Deep Learning techniques in attempting to automatize and improve the diagnosis of atheroma plaques. To achieve so we tackle the following problems: ultrasound image segmentation and plaque tissue classification. The techniques applied in this work are the following. For the segmentation of the common carotid artery IMT we replicate a state of the art Fully Convolutional Network approach and explore the implementation of a trained network to another dataset. Regarding the plaque classification problem, we explore the performance of Convolutional Neural Networks as well with two baseline methods. These techniques are applied on two datasets: REGICOR and NEFRONA. These datasets are provided by two research groups of IMIM and IRBLleida in collaboration in a larger project with the UB. A data exploration analysis is also presented on the patient’s data of NEFRONA to justify the importance of detecting the atherosclerotic plaques and thus the techniques we explore

    Attention-Based UNet Deep Learning Model for Plaque Segmentation in Carotid Ultrasound for Stroke Risk Stratification: An Artificial Intelligence Paradigm

    Get PDF
    Stroke and cardiovascular diseases (CVD) significantly affect the world population. The early detection of such events may prevent the burden of death and costly surgery. Conventional methods are neither automated nor clinically accurate. Artificial Intelligence-based methods of automatically detecting and predicting the severity of CVD and stroke in their early stages are of prime importance. This study proposes an attention-channel-based UNet deep learning (DL) model that identifies the carotid plaques in the internal carotid artery (ICA) and common carotid artery (CCA) images. Our experiments consist of 970 ICA images from the UK, 379 CCA images from diabetic Japanese patients, and 300 CCA images from post-menopausal women from Hong Kong. We combined both CCA images to form an integrated database of 679 images. A rotation transformation technique was applied to 679 CCA images, doubling the database for the experiments. The cross-validation K5 (80% training: 20% testing) protocol was applied for accuracy determination. The results of the Attention-UNet model are benchmarked against UNet, UNet++, and UNet3P models. Visual plaque segmentation showed improvement in the Attention-UNet results compared to the other three models. The correlation coefficient (CC) value for Attention-UNet is 0.96, compared to 0.93, 0.96, and 0.92 for UNet, UNet++, and UNet3P models. Similarly, the AUC value for Attention-UNet is 0.97, compared to 0.964, 0.966, and 0.965 for other models. Conclusively, the Attention-UNet model is beneficial in segmenting very bright and fuzzy plaque images that are hard to diagnose using other methods. Further, we present a multi-ethnic, multi-center, racial bias-free study of stroke risk assessment
    • …
    corecore