127 research outputs found

    Review : Deep learning in electron microscopy

    Get PDF
    Deep learning is transforming most areas of science and technology, including electron microscopy. This review paper offers a practical perspective aimed at developers with limited familiarity. For context, we review popular applications of deep learning in electron microscopy. Following, we discuss hardware and software needed to get started with deep learning and interface with electron microscopes. We then review neural network components, popular architectures, and their optimization. Finally, we discuss future directions of deep learning in electron microscopy

    Towards the digitalisation of porous energy materials: evolution of digital approaches for microstructural design

    Get PDF
    Porous energy materials are essential components of many energy devices and systems, the development of which have been long plagued by two main challenges. The first is the ‘curse of dimensionality’, i.e. the complex structure–property relationships of energy materials are largely determined by a high-dimensional parameter space. The second challenge is the low efficiency of optimisation/discovery techniques for new energy materials. Digitalisation of porous energy materials is currently being considered as one of the most promising solutions to tackle these issues by transforming all material information into the digital space using reconstruction and imaging data and fusing this with various computational methods. With the help of material digitalisation, the rapid characterisation, the prediction of properties, and the autonomous optimisation of new energy materials can be achieved by using advanced mathematical algorithms. In this paper, we review the evolution of these computational and digital approaches and their typical applications in studying various porous energy materials and devices. Particularly, we address the recent progress of artificial intelligence (AI) in porous energy materials and highlight the successful application of several deep learning methods in microstructural reconstruction and generation, property prediction, and the performance optimisation of energy materials in service. We also provide a perspective on the potential of deep learning methods in achieving autonomous optimisation and discovery of new porous energy materials based on advanced computational modelling and AI techniques

    Nucleus segmentation : towards automated solutions

    Get PDF
    Single nucleus segmentation is a frequent challenge of microscopy image processing, since it is the first step of many quantitative data analysis pipelines. The quality of tracking single cells, extracting features or classifying cellular phenotypes strongly depends on segmentation accuracy. Worldwide competitions have been held, aiming to improve segmentation, and recent years have definitely brought significant improvements: large annotated datasets are now freely available, several 2D segmentation strategies have been extended to 3D, and deep learning approaches have increased accuracy. However, even today, no generally accepted solution and benchmarking platform exist. We review the most recent single-cell segmentation tools, and provide an interactive method browser to select the most appropriate solution.Peer reviewe

    Applications and Techniques for Fast Machine Learning in Science

    Get PDF
    In this community review report, we discuss applications and techniques for fast machine learning (ML) in science - the concept of integrating powerful ML methods into the real-time experimental data processing loop to accelerate scientific discovery. The material for the report builds on two workshops held by the Fast ML for Science community and covers three main areas: applications for fast ML across a number of scientific domains; techniques for training and implementing performant and resource-efficient ML algorithms; and computing architectures, platforms, and technologies for deploying these algorithms. We also present overlapping challenges across the multiple scientific domains where common solutions can be found. This community report is intended to give plenty of examples and inspiration for scientific discovery through integrated and accelerated ML solutions. This is followed by a high-level overview and organization of technical advances, including an abundance of pointers to source material, which can enable these breakthroughs

    3D exemplar-based image inpainting in electron microscopy

    Get PDF
    In electron microscopy (EM) a common problem is the non-availability of data, which causes artefacts in reconstructions. In this thesis the goal is to generate artificial data where missing in EM by using exemplar-based inpainting (EBI). We implement an accelerated 3D version tailored to applications in EM, which reduces reconstruction times from days to minutes. We develop intelligent sampling strategies to find optimal data as input for reconstruction methods. Further, we investigate approaches to reduce electron dose and acquisition time. Sparse sampling followed by inpainting is the most promising approach. As common evaluation measures may lead to misinterpretation of results in EM and falsify a subsequent analysis, we propose to use application driven metrics and demonstrate this in a segmentation task. A further application of our technique is the artificial generation of projections in tiltbased EM. EBI is used to generate missing projections, such that the full angular range is covered. Subsequent reconstructions are significantly enhanced in terms of resolution, which facilitates further analysis of samples. In conclusion, EBI proves promising when used as an additional data generation step to tackle the non-availability of data in EM, which is evaluated in selected applications. Enhancing adaptive sampling methods and refining EBI, especially considering the mutual influence, promotes higher throughput in EM using less electron dose while not lessening quality.Ein häufig vorkommendes Problem in der Elektronenmikroskopie (EM) ist die Nichtverfügbarkeit von Daten, was zu Artefakten in Rekonstruktionen führt. In dieser Arbeit ist es das Ziel fehlende Daten in der EM künstlich zu erzeugen, was durch Exemplar-basiertes Inpainting (EBI) realisiert wird. Wir implementieren eine auf EM zugeschnittene beschleunigte 3D Version, welche es ermöglicht, Rekonstruktionszeiten von Tagen auf Minuten zu reduzieren. Wir entwickeln intelligente Abtaststrategien, um optimale Datenpunkte für die Rekonstruktion zu erhalten. Ansätze zur Reduzierung von Elektronendosis und Aufnahmezeit werden untersucht. Unterabtastung gefolgt von Inpainting führt zu den besten Resultaten. Evaluationsmaße zur Beurteilung der Rekonstruktionsqualität helfen in der EM oft nicht und können zu falschen Schlüssen führen, weswegen anwendungsbasierte Metriken die bessere Wahl darstellen. Dies demonstrieren wir anhand eines Beispiels. Die künstliche Erzeugung von Projektionen in der neigungsbasierten Elektronentomographie ist eine weitere Anwendung. EBI wird verwendet um fehlende Projektionen zu generieren. Daraus resultierende Rekonstruktionen weisen eine deutlich erhöhte Auflösung auf. EBI ist ein vielversprechender Ansatz, um nicht verfügbare Daten in der EM zu generieren. Dies wird auf Basis verschiedener Anwendungen gezeigt und evaluiert. Adaptive Aufnahmestrategien und EBI können also zu einem höheren Durchsatz in der EM führen, ohne die Bildqualität merklich zu verschlechtern

    A model-based method for 3D reconstruction of cerebellar parallel fibres from high-resolution electron microscope images

    Get PDF
    In order to understand how the brain works, we need to understand how its neural circuits process information. Electron microscopy remains the only imaging technique capable of providing sufficient resolution to reconstruct the dense connectivity between all neurons in a circuit. Automated electron microscopy techniques are approaching the point where usefully large circuits might be successfully imaged, but the development of automated reconstruction techniques lags far behind. No fully-automated reconstruction technique currently produces acceptably accurate reconstructions, and semi-automated approaches currently require an extreme amount of manual effort. This reconstruction bottleneck places severe limits on the size of neural circuits that can be reconstructed. Improved automated reconstruction techniques are therefore highly desired and under active development. The human brain contains ~86 billion neurons and ~80% of these are located in the cerebellum. Of these cerebellar neurons, the vast majority are granule cells. The axons of these granule cells are called parallel fibres and tend to be oriented in approximately the same direction, making 2+1D reconstruction approaches feasible. In this work we focus on the problem of reconstructing these parallel fibres and make four main contributions: (1) a model-based algorithm for reconstructing 2D parallel fibre cross-sections that achieves state of the art 2D reconstruction performance; (2) a fully-automated algorithm for reconstructing 3D parallel fibres that achieves state of the art 3D reconstruction performance; (3) a semi-automated approach for reconstructing 3D parallel fibres that significantly improves reconstruction accuracy compared to our fully-automated approach while requiring ~40 times less labelling effort than a purely manual reconstruction; (4) a "gold standard" ground truth data set for the molecular layer of the mouse cerebellum that will provide a valuable reference for the development and benchmarking of reconstruction algorithms

    Deep Learning-Based Particle Detection and Instance Segmentation for Microscopy Images

    Get PDF
    Bildgebende mikroskopische Verfahren ermöglichen Forschern, Einblicke in komplexe, bisher unverstandene Prozesse zu gewinnen. Um den Forschern den Weg zu neuen Erkenntnissen zu erleichtern, sind hoch-automatisierte, vielseitige, genaue, benutzerfreundliche und zuverlässige Methoden zur Partikeldetektion und Instanzsegmentierung erforderlich. Diese Methoden sollten insbesondere für unterschiedliche Bildgebungsbedingungen und Anwendungen geeignet sein, ohne dass Expertenwissen für Anpassungen erforderlich ist. Daher werden in dieser Arbeit eine neue auf Deep Learning basierende Methode zur Partikeldetektion und zwei auf Deep Learning basierende Methoden zur Instanzsegmentierung vorgestellt. Der Partikeldetektionsansatz verwendet einen von der Partikelgröße abhängigen Hochskalierungs-Schritt und ein U-Net Netzwerk für die semantische Segmentierung von Partikelmarkern. Nach der Validierung der Hochskalierung mit synthetisch erzeugten Daten wird die Partikeldetektionssoftware BeadNet vorgestellt. Die Ergebnisse auf einem Datensatz mit fluoreszierenden Latex-Kügelchen zeigen, dass BeadNet Partikel genauer als traditionelle Methoden detektieren kann. Die beiden neuen Instanzsegmentierungsmethoden verwenden ein U-Net Netzwerk mit zwei Decodern und werden für vier Objektarten und drei Mikroskopie-Bildgebungsverfahren evaluiert. Für die Evaluierung werden ein einzelner nicht balancierter Trainingsdatensatz und ein einzelner Satz von Postprocessing-Parametern verwendet. Danach wird die bessere Methode in der Cell Tracking Challenge weiter validiert, wobei mehrere Top-3-Platzierungen und für sechs Datensätze eine mit einem menschlichen Experten vergleichbare Leistung erreicht werden. Außerdem wird die neue Instanzsegmentierungssoftware microbeSEG vorgestellt. microbeSEG verwendet, analog zu BeadNet, OMERO für die Datenverwaltung und bietet Funktionen für die Erstellung von Trainingsdaten, das Trainieren von Modellen, die Modellevaluation und die Modellanwendung. Die qualitativen Anwendungen von BeadNet und microbeSEG zeigen, dass beide Tools eine genaue Auswertung vieler verschiedener Mikroskopie-Bilddaten ermöglichen. Abschließend gibt diese Dissertation einen Ausblick auf den Bedarf an weiteren Richtlinien für Bildanalyse-Wettbewerbe und Methodenvergleiche für eine zielgerichtete zukünftige Methodenentwicklung

    Semi-Weakly Supervised Learning for Label-efficient Semantic Segmentation in Expert-driven Domains

    Get PDF
    Unter Zuhilfenahme von Deep Learning haben semantische Segmentierungssysteme beeindruckende Ergebnisse erzielt, allerdings auf der Grundlage von überwachtem Lernen, das durch die Verfügbarkeit kostspieliger, pixelweise annotierter Bilder limitiert ist. Bei der Untersuchung der Performance dieser Segmentierungssysteme in Kontexten, in denen kaum Annotationen vorhanden sind, bleiben sie hinter den hohen Erwartungen, die durch die Performance in annotationsreichen Szenarien geschürt werden, zurück. Dieses Dilemma wiegt besonders schwer, wenn die Annotationen von lange geschultem Personal, z.B. Medizinern, Prozessexperten oder Wissenschaftlern, erstellt werden müssen. Um gut funktionierende Segmentierungsmodelle in diese annotationsarmen, Experten-angetriebenen Domänen zu bringen, sind neue Lösungen nötig. Zu diesem Zweck untersuchen wir zunächst, wie schlecht aktuelle Segmentierungsmodelle mit extrem annotationsarmen Szenarien in Experten-angetriebenen Bildgebungsdomänen zurechtkommen. Daran schließt sich direkt die Frage an, ob die kostspielige pixelweise Annotation, mit der Segmentierungsmodelle in der Regel trainiert werden, gänzlich umgangen werden kann, oder ob sie umgekehrt ein Kosten-effektiver Anstoß sein kann, um die Segmentierung in Gang zu bringen, wenn sie sparsam eingestetzt wird. Danach gehen wir auf die Frage ein, ob verschiedene Arten von Annotationen, schwache- und pixelweise Annotationen mit unterschiedlich hohen Kosten, gemeinsam genutzt werden können, um den Annotationsprozess flexibler zu gestalten. Experten-angetriebene Domänen haben oft nicht nur einen Annotationsmangel, sondern auch völlig andere Bildeigenschaften, beispielsweise volumetrische Bild-Daten. Der Übergang von der 2D- zur 3D-semantischen Segmentierung führt zu voxelweisen Annotationsprozessen, was den nötigen Zeitaufwand für die Annotierung mit der zusätzlichen Dimension multipliziert. Um zu einer handlicheren Annotation zu gelangen, untersuchen wir Trainingsstrategien für Segmentierungsmodelle, die nur preiswertere, partielle Annotationen oder rohe, nicht annotierte Volumina benötigen. Dieser Wechsel in der Art der Überwachung im Training macht die Anwendung der Volumensegmentierung in Experten-angetriebenen Domänen realistischer, da die Annotationskosten drastisch gesenkt werden und die Annotatoren von Volumina-Annotationen befreit werden, welche naturgemäß auch eine Menge visuell redundanter Regionen enthalten würden. Schließlich stellen wir die Frage, ob es möglich ist, die Annotations-Experten von der strikten Anforderung zu befreien, einen einzigen, spezifischen Annotationstyp liefern zu müssen, und eine Trainingsstrategie zu entwickeln, die mit einer breiten Vielfalt semantischer Information funktioniert. Eine solche Methode wurde hierzu entwickelt und in unserer umfangreichen experimentellen Evaluierung kommen interessante Eigenschaften verschiedener Annotationstypen-Mixe in Bezug auf deren Segmentierungsperformance ans Licht. Unsere Untersuchungen führten zu neuen Forschungsrichtungen in der semi-weakly überwachten Segmentierung, zu neuartigen, annotationseffizienteren Methoden und Trainingsstrategien sowie zu experimentellen Erkenntnissen, zur Verbesserung von Annotationsprozessen, indem diese annotationseffizient, expertenzentriert und flexibel gestaltet werden
    corecore