1,410 research outputs found

    Recent Advances in Efficient Computation of Deep Convolutional Neural Networks

    Full text link
    Deep neural networks have evolved remarkably over the past few years and they are currently the fundamental tools of many intelligent systems. At the same time, the computational complexity and resource consumption of these networks also continue to increase. This will pose a significant challenge to the deployment of such networks, especially in real-time applications or on resource-limited devices. Thus, network acceleration has become a hot topic within the deep learning community. As for hardware implementation of deep neural networks, a batch of accelerators based on FPGA/ASIC have been proposed in recent years. In this paper, we provide a comprehensive survey of recent advances in network acceleration, compression and accelerator design from both algorithm and hardware points of view. Specifically, we provide a thorough analysis of each of the following topics: network pruning, low-rank approximation, network quantization, teacher-student networks, compact network design and hardware accelerators. Finally, we will introduce and discuss a few possible future directions.Comment: 14 pages, 3 figure

    SmartExchange: Trading Higher-cost Memory Storage/Access for Lower-cost Computation

    Full text link
    We present SmartExchange, an algorithm-hardware co-design framework to trade higher-cost memory storage/access for lower-cost computation, for energy-efficient inference of deep neural networks (DNNs). We develop a novel algorithm to enforce a specially favorable DNN weight structure, where each layerwise weight matrix can be stored as the product of a small basis matrix and a large sparse coefficient matrix whose non-zero elements are all power-of-2. To our best knowledge, this algorithm is the first formulation that integrates three mainstream model compression ideas: sparsification or pruning, decomposition, and quantization, into one unified framework. The resulting sparse and readily-quantized DNN thus enjoys greatly reduced energy consumption in data movement as well as weight storage. On top of that, we further design a dedicated accelerator to fully utilize the SmartExchange-enforced weights to improve both energy efficiency and latency performance. Extensive experiments show that 1) on the algorithm level, SmartExchange outperforms state-of-the-art compression techniques, including merely sparsification or pruning, decomposition, and quantization, in various ablation studies based on nine DNN models and four datasets; and 2) on the hardware level, the proposed SmartExchange based accelerator can improve the energy efficiency by up to 6.7×\times and the speedup by up to 19.2×\times over four state-of-the-art DNN accelerators, when benchmarked on seven DNN models (including four standard DNNs, two compact DNN models, and one segmentation model) and three datasets.Comment: Accepted by 47th International Symposium on Computer Architecture (ISCA'2020

    FINN-R: An End-to-End Deep-Learning Framework for Fast Exploration of Quantized Neural Networks

    Full text link
    Convolutional Neural Networks have rapidly become the most successful machine learning algorithm, enabling ubiquitous machine vision and intelligent decisions on even embedded computing-systems. While the underlying arithmetic is structurally simple, compute and memory requirements are challenging. One of the promising opportunities is leveraging reduced-precision representations for inputs, activations and model parameters. The resulting scalability in performance, power efficiency and storage footprint provides interesting design compromises in exchange for a small reduction in accuracy. FPGAs are ideal for exploiting low-precision inference engines leveraging custom precisions to achieve the required numerical accuracy for a given application. In this article, we describe the second generation of the FINN framework, an end-to-end tool which enables design space exploration and automates the creation of fully customized inference engines on FPGAs. Given a neural network description, the tool optimizes for given platforms, design targets and a specific precision. We introduce formalizations of resource cost functions and performance predictions, and elaborate on the optimization algorithms. Finally, we evaluate a selection of reduced precision neural networks ranging from CIFAR-10 classifiers to YOLO-based object detection on a range of platforms including PYNQ and AWS\,F1, demonstrating new unprecedented measured throughput at 50TOp/s on AWS-F1 and 5TOp/s on embedded devices.Comment: to be published in ACM TRETS Special Edition on Deep Learnin

    CodeX: Bit-Flexible Encoding for Streaming-based FPGA Acceleration of DNNs

    Full text link
    This paper proposes CodeX, an end-to-end framework that facilitates encoding, bitwidth customization, fine-tuning, and implementation of neural networks on FPGA platforms. CodeX incorporates nonlinear encoding to the computation flow of neural networks to save memory. The encoded features demand significantly lower storage compared to the raw full-precision activation values; therefore, the execution flow of CodeX hardware engine is completely performed within the FPGA using on-chip streaming buffers with no access to the off-chip DRAM. We further propose a fully-automated algorithm inspired by reinforcement learning which determines the customized encoding bitwidth across network layers. CodeX full-stack framework comprises of a compiler which takes a high-level Python description of an arbitrary neural network architecture. The compiler then instantiates the corresponding elements from CodeX Hardware library for FPGA implementation. Proof-of-concept evaluations on MNIST, SVHN, and CIFAR-10 datasets demonstrate an average of 4.65x throughput improvement compared to stand-alone weight encoding. We further compare CodeX with six existing full-precision DNN accelerators on ImageNet, showing an average of 3.6x and 2.54x improvement in throughput and performance-per-watt, respectively

    Neural Network-Hardware Co-design for Scalable RRAM-based BNN Accelerators

    Full text link
    Recently, RRAM-based Binary Neural Network (BNN) hardware has been gaining interests as it requires 1-bit sense-amp only and eliminates the need for high-resolution ADC and DAC. However, RRAM-based BNN hardware still requires high-resolution ADC for partial sum calculation to implement large-scale neural network using multiple memory arrays. We propose a neural network-hardware co-design approach to split input to fit each split network on a RRAM array so that the reconstructed BNNs calculate 1-bit output neuron in each array. As a result, ADC can be completely eliminated from the design even for large-scale neural network. Simulation results show that the proposed network reconstruction and retraining recovers the inference accuracy of the original BNN. The accuracy loss of the proposed scheme in the CIFAR-10 testcase was less than 1.1% compared to the original network. The code for training and running proposed BNN models is available at: https://github.com/YulhwaKim/RRAMScalable_BNN

    A Survey of FPGA-Based Neural Network Accelerator

    Full text link
    Recent researches on neural network have shown significant advantage in machine learning over traditional algorithms based on handcrafted features and models. Neural network is now widely adopted in regions like image, speech and video recognition. But the high computation and storage complexity of neural network inference poses great difficulty on its application. CPU platforms are hard to offer enough computation capacity. GPU platforms are the first choice for neural network process because of its high computation capacity and easy to use development frameworks. On the other hand, FPGA-based neural network inference accelerator is becoming a research topic. With specifically designed hardware, FPGA is the next possible solution to surpass GPU in speed and energy efficiency. Various FPGA-based accelerator designs have been proposed with software and hardware optimization techniques to achieve high speed and energy efficiency. In this paper, we give an overview of previous work on neural network inference accelerators based on FPGA and summarize the main techniques used. An investigation from software to hardware, from circuit level to system level is carried out to complete analysis of FPGA-based neural network inference accelerator design and serves as a guide to future work

    AdaComp : Adaptive Residual Gradient Compression for Data-Parallel Distributed Training

    Full text link
    Highly distributed training of Deep Neural Networks (DNNs) on future compute platforms (offering 100 of TeraOps/s of computational capacity) is expected to be severely communication constrained. To overcome this limitation, new gradient compression techniques are needed that are computationally friendly, applicable to a wide variety of layers seen in Deep Neural Networks and adaptable to variations in network architectures as well as their hyper-parameters. In this paper we introduce a novel technique - the Adaptive Residual Gradient Compression (AdaComp) scheme. AdaComp is based on localized selection of gradient residues and automatically tunes the compression rate depending on local activity. We show excellent results on a wide spectrum of state of the art Deep Learning models in multiple domains (vision, speech, language), datasets (MNIST, CIFAR10, ImageNet, BN50, Shakespeare), optimizers (SGD with momentum, Adam) and network parameters (number of learners, minibatch-size etc.). Exploiting both sparsity and quantization, we demonstrate end-to-end compression rates of ~200X for fully-connected and recurrent layers, and ~40X for convolutional layers, without any noticeable degradation in model accuracies.Comment: IBM Research AI, 9 pages, 7 figures, AAAI18 accepte

    Precision Highway for Ultra Low-Precision Quantization

    Full text link
    Neural network quantization has an inherent problem called accumulated quantization error, which is the key obstacle towards ultra-low precision, e.g., 2- or 3-bit precision. To resolve this problem, we propose precision highway, which forms an end-to-end high-precision information flow while performing the ultra low-precision computation. First, we describe how the precision highway reduce the accumulated quantization error in both convolutional and recurrent neural networks. We also provide the quantitative analysis of the benefit of precision highway and evaluate the overhead on the state-of-the-art hardware accelerator. In the experiments, our proposed method outperforms the best existing quantization methods while offering 3-bit weight/activation quantization with no accuracy loss and 2-bit quantization with a 2.45 % top-1 accuracy loss in ResNet-50. We also report that the proposed method significantly outperforms the existing method in the 2-bit quantization of an LSTM for language modeling

    Exploring the Regularity of Sparse Structure in Convolutional Neural Networks

    Full text link
    Sparsity helps reduce the computational complexity of deep neural networks by skipping zeros. Taking advantage of sparsity is listed as a high priority in next generation DNN accelerators such as TPU. The structure of sparsity, i.e., the granularity of pruning, affects the efficiency of hardware accelerator design as well as the prediction accuracy. Coarse-grained pruning creates regular sparsity patterns, making it more amenable for hardware acceleration but more challenging to maintain the same accuracy. In this paper we quantitatively measure the trade-off between sparsity regularity and prediction accuracy, providing insights in how to maintain accuracy while having more a more structured sparsity pattern. Our experimental results show that coarse-grained pruning can achieve a sparsity ratio similar to unstructured pruning without loss of accuracy. Moreover, due to the index saving effect, coarse-grained pruning is able to obtain a better compression ratio than fine-grained sparsity at the same accuracy threshold. Based on the recent sparse convolutional neural network accelerator (SCNN), our experiments further demonstrate that coarse-grained sparsity saves about 2x the memory references compared to fine-grained sparsity. Since memory reference is more than two orders of magnitude more expensive than arithmetic operations, the regularity of sparse structure leads to more efficient hardware design.Comment: submitted to NIPS 201

    DNN Feature Map Compression using Learned Representation over GF(2)

    Full text link
    In this paper, we introduce a method to compress intermediate feature maps of deep neural networks (DNNs) to decrease memory storage and bandwidth requirements during inference. Unlike previous works, the proposed method is based on converting fixed-point activations into vectors over the smallest GF(2) finite field followed by nonlinear dimensionality reduction (NDR) layers embedded into a DNN. Such an end-to-end learned representation finds more compact feature maps by exploiting quantization redundancies within the fixed-point activations along the channel or spatial dimensions. We apply the proposed network architectures derived from modified SqueezeNet and MobileNetV2 to the tasks of ImageNet classification and PASCAL VOC object detection. Compared to prior approaches, the conducted experiments show a factor of 2 decrease in memory requirements with minor degradation in accuracy while adding only bitwise computations.Comment: CEFRL201
    • …
    corecore