1,319 research outputs found

    Convolutional Neural Fabrics

    Get PDF
    Despite the success of CNNs, selecting the optimal architecture for a given task remains an open problem. Instead of aiming to select a single optimal architecture, we propose a "fabric" that embeds an exponentially large number of architectures. The fabric consists of a 3D trellis that connects response maps at different layers, scales, and channels with a sparse homogeneous local connectivity pattern. The only hyper-parameters of a fabric are the number of channels and layers. While individual architectures can be recovered as paths, the fabric can in addition ensemble all embedded architectures together, sharing their weights where their paths overlap. Parameters can be learned using standard methods based on back-propagation, at a cost that scales linearly in the fabric size. We present benchmark results competitive with the state of the art for image classification on MNIST and CIFAR10, and for semantic segmentation on the Part Labels dataset.Comment: Corrected typos (In proceedings of NIPS16

    Connecting Look and Feel: Associating the visual and tactile properties of physical materials

    Full text link
    For machines to interact with the physical world, they must understand the physical properties of objects and materials they encounter. We use fabrics as an example of a deformable material with a rich set of mechanical properties. A thin flexible fabric, when draped, tends to look different from a heavy stiff fabric. It also feels different when touched. Using a collection of 118 fabric sample, we captured color and depth images of draped fabrics along with tactile data from a high resolution touch sensor. We then sought to associate the information from vision and touch by jointly training CNNs across the three modalities. Through the CNN, each input, regardless of the modality, generates an embedding vector that records the fabric's physical property. By comparing the embeddings, our system is able to look at a fabric image and predict how it will feel, and vice versa. We also show that a system jointly trained on vision and touch data can outperform a similar system trained only on visual data when tested purely with visual inputs

    Learning Transferable Architectures for Scalable Image Recognition

    Full text link
    Developing neural network image classification models often requires significant architecture engineering. In this paper, we study a method to learn the model architectures directly on the dataset of interest. As this approach is expensive when the dataset is large, we propose to search for an architectural building block on a small dataset and then transfer the block to a larger dataset. The key contribution of this work is the design of a new search space (the "NASNet search space") which enables transferability. In our experiments, we search for the best convolutional layer (or "cell") on the CIFAR-10 dataset and then apply this cell to the ImageNet dataset by stacking together more copies of this cell, each with their own parameters to design a convolutional architecture, named "NASNet architecture". We also introduce a new regularization technique called ScheduledDropPath that significantly improves generalization in the NASNet models. On CIFAR-10 itself, NASNet achieves 2.4% error rate, which is state-of-the-art. On ImageNet, NASNet achieves, among the published works, state-of-the-art accuracy of 82.7% top-1 and 96.2% top-5 on ImageNet. Our model is 1.2% better in top-1 accuracy than the best human-invented architectures while having 9 billion fewer FLOPS - a reduction of 28% in computational demand from the previous state-of-the-art model. When evaluated at different levels of computational cost, accuracies of NASNets exceed those of the state-of-the-art human-designed models. For instance, a small version of NASNet also achieves 74% top-1 accuracy, which is 3.1% better than equivalently-sized, state-of-the-art models for mobile platforms. Finally, the learned features by NASNet used with the Faster-RCNN framework surpass state-of-the-art by 4.0% achieving 43.1% mAP on the COCO dataset

    Many Task Learning with Task Routing

    Full text link
    Typical multi-task learning (MTL) methods rely on architectural adjustments and a large trainable parameter set to jointly optimize over several tasks. However, when the number of tasks increases so do the complexity of the architectural adjustments and resource requirements. In this paper, we introduce a method which applies a conditional feature-wise transformation over the convolutional activations that enables a model to successfully perform a large number of tasks. To distinguish from regular MTL, we introduce Many Task Learning (MaTL) as a special case of MTL where more than 20 tasks are performed by a single model. Our method dubbed Task Routing (TR) is encapsulated in a layer we call the Task Routing Layer (TRL), which applied in an MaTL scenario successfully fits hundreds of classification tasks in one model. We evaluate our method on 5 datasets against strong baselines and state-of-the-art approaches.Comment: 8 Pages, 5 Figures, 2 Table

    Optimizing Filter Size in Convolutional Neural Networks for Facial Action Unit Recognition

    Full text link
    Recognizing facial action units (AUs) during spontaneous facial displays is a challenging problem. Most recently, Convolutional Neural Networks (CNNs) have shown promise for facial AU recognition, where predefined and fixed convolution filter sizes are employed. In order to achieve the best performance, the optimal filter size is often empirically found by conducting extensive experimental validation. Such a training process suffers from expensive training cost, especially as the network becomes deeper. This paper proposes a novel Optimized Filter Size CNN (OFS-CNN), where the filter sizes and weights of all convolutional layers are learned simultaneously from the training data along with learning convolution filters. Specifically, the filter size is defined as a continuous variable, which is optimized by minimizing the training loss. Experimental results on two AU-coded spontaneous databases have shown that the proposed OFS-CNN is capable of estimating optimal filter size for varying image resolution and outperforms traditional CNNs with the best filter size obtained by exhaustive search. The OFS-CNN also beats the CNN using multiple filter sizes and more importantly, is much more efficient during testing with the proposed forward-backward propagation algorithm
    • …
    corecore