4,409 research outputs found

    Convolutional Drift Networks for Video Classification

    Full text link
    Analyzing spatio-temporal data like video is a challenging task that requires processing visual and temporal information effectively. Convolutional Neural Networks have shown promise as baseline fixed feature extractors through transfer learning, a technique that helps minimize the training cost on visual information. Temporal information is often handled using hand-crafted features or Recurrent Neural Networks, but this can be overly specific or prohibitively complex. Building a fully trainable system that can efficiently analyze spatio-temporal data without hand-crafted features or complex training is an open challenge. We present a new neural network architecture to address this challenge, the Convolutional Drift Network (CDN). Our CDN architecture combines the visual feature extraction power of deep Convolutional Neural Networks with the intrinsically efficient temporal processing provided by Reservoir Computing. In this introductory paper on the CDN, we provide a very simple baseline implementation tested on two egocentric (first-person) video activity datasets.We achieve video-level activity classification results on-par with state-of-the art methods. Notably, performance on this complex spatio-temporal task was produced by only training a single feed-forward layer in the CDN.Comment: Published in IEEE Rebooting Computin

    Online Adaptation of Convolutional Neural Networks for Video Object Segmentation

    Full text link
    We tackle the task of semi-supervised video object segmentation, i.e. segmenting the pixels belonging to an object in the video using the ground truth pixel mask for the first frame. We build on the recently introduced one-shot video object segmentation (OSVOS) approach which uses a pretrained network and fine-tunes it on the first frame. While achieving impressive performance, at test time OSVOS uses the fine-tuned network in unchanged form and is not able to adapt to large changes in object appearance. To overcome this limitation, we propose Online Adaptive Video Object Segmentation (OnAVOS) which updates the network online using training examples selected based on the confidence of the network and the spatial configuration. Additionally, we add a pretraining step based on objectness, which is learned on PASCAL. Our experiments show that both extensions are highly effective and improve the state of the art on DAVIS to an intersection-over-union score of 85.7%.Comment: Accepted at BMVC 2017. This version contains minor changes for the camera ready versio

    SANet: Structure-Aware Network for Visual Tracking

    Full text link
    Convolutional neural network (CNN) has drawn increasing interest in visual tracking owing to its powerfulness in feature extraction. Most existing CNN-based trackers treat tracking as a classification problem. However, these trackers are sensitive to similar distractors because their CNN models mainly focus on inter-class classification. To address this problem, we use self-structure information of object to distinguish it from distractors. Specifically, we utilize recurrent neural network (RNN) to model object structure, and incorporate it into CNN to improve its robustness to similar distractors. Considering that convolutional layers in different levels characterize the object from different perspectives, we use multiple RNNs to model object structure in different levels respectively. Extensive experiments on three benchmarks, OTB100, TC-128 and VOT2015, show that the proposed algorithm outperforms other methods. Code is released at http://www.dabi.temple.edu/~hbling/code/SANet/SANet.html.Comment: In CVPR Deep Vision Workshop, 201

    Online Multi-Object Tracking Using CNN-based Single Object Tracker with Spatial-Temporal Attention Mechanism

    Full text link
    In this paper, we propose a CNN-based framework for online MOT. This framework utilizes the merits of single object trackers in adapting appearance models and searching for target in the next frame. Simply applying single object tracker for MOT will encounter the problem in computational efficiency and drifted results caused by occlusion. Our framework achieves computational efficiency by sharing features and using ROI-Pooling to obtain individual features for each target. Some online learned target-specific CNN layers are used for adapting the appearance model for each target. In the framework, we introduce spatial-temporal attention mechanism (STAM) to handle the drift caused by occlusion and interaction among targets. The visibility map of the target is learned and used for inferring the spatial attention map. The spatial attention map is then applied to weight the features. Besides, the occlusion status can be estimated from the visibility map, which controls the online updating process via weighted loss on training samples with different occlusion statuses in different frames. It can be considered as temporal attention mechanism. The proposed algorithm achieves 34.3% and 46.0% in MOTA on challenging MOT15 and MOT16 benchmark dataset respectively.Comment: Accepted at International Conference on Computer Vision (ICCV) 201
    • …
    corecore