782 research outputs found

    Error Estimates for Approximations of Distributed Order Time Fractional Diffusion with Nonsmooth Data

    Get PDF
    In this work, we consider the numerical solution of an initial boundary value problem for the distributed order time fractional diffusion equation. The model arises in the mathematical modeling of ultra-slow diffusion processes observed in some physical problems, whose solution decays only logarithmically as the time tt tends to infinity. We develop a space semidiscrete scheme based on the standard Galerkin finite element method, and establish error estimates optimal with respect to data regularity in L2(D)L^2(D) and H1(D)H^1(D) norms for both smooth and nonsmooth initial data. Further, we propose two fully discrete schemes, based on the Laplace transform and convolution quadrature generated by the backward Euler method, respectively, and provide optimal convergence rates in the L2(D)L^2(D) norm, which exhibits exponential convergence and first-order convergence in time, respectively. Extensive numerical experiments are provided to verify the error estimates for both smooth and nonsmooth initial data, and to examine the asymptotic behavior of the solution.Comment: 25 pages, 2 figure

    Numerical methods for time-fractional evolution equations with nonsmooth data: a concise overview

    Get PDF
    Over the past few decades, there has been substantial interest in evolution equations that involving a fractional-order derivative of order α(0,1)\alpha\in(0,1) in time, due to their many successful applications in engineering, physics, biology and finance. Thus, it is of paramount importance to develop and to analyze efficient and accurate numerical methods for reliably simulating such models, and the literature on the topic is vast and fast growing. The present paper gives a concise overview on numerical schemes for the subdiffusion model with nonsmooth problem data, which are important for the numerical analysis of many problems arising in optimal control, inverse problems and stochastic analysis. We focus on the following aspects of the subdiffusion model: regularity theory, Galerkin finite element discretization in space, time-stepping schemes (including convolution quadrature and L1 type schemes), and space-time variational formulations, and compare the results with that for standard parabolic problems. Further, these aspects are showcased with illustrative numerical experiments and complemented with perspectives and pointers to relevant literature.Comment: 24 pages, 3 figure

    Fast and oblivious convolution quadrature

    Full text link
    We give an algorithm to compute NN steps of a convolution quadrature approximation to a continuous temporal convolution using only O(NlogN)O(N \log N) multiplications and O(logN)O(\log N) active memory. The method does not require evaluations of the convolution kernel, but instead O(logN)O(\log N) evaluations of its Laplace transform, which is assumed sectorial. The algorithm can be used for the stable numerical solution with quasi-optimal complexity of linear and nonlinear integral and integro-differential equations of convolution type. In a numerical example we apply it to solve a subdiffusion equation with transparent boundary conditions

    Diffusive approximation of a time-fractional Burger's equation in nonlinear acoustics

    Get PDF
    A fractional time derivative is introduced into the Burger's equation to model losses of nonlinear waves. This term amounts to a time convolution product, which greatly penalizes the numerical modeling. A diffusive representation of the fractional derivative is adopted here, replacing this nonlocal operator by a continuum of memory variables that satisfy local-in-time ordinary differential equations. Then a quadrature formula yields a system of local partial differential equations, well-suited to numerical integration. The determination of the quadrature coefficients is crucial to ensure both the well-posedness of the system and the computational efficiency of the diffusive approximation. For this purpose, optimization with constraint is shown to be a very efficient strategy. Strang splitting is used to solve successively the hyperbolic part by a shock-capturing scheme, and the diffusive part exactly. Numerical experiments are proposed to assess the efficiency of the numerical modeling, and to illustrate the effect of the fractional attenuation on the wave propagation.Comment: submitted to Siam SIA

    Discrete maximal regularity of time-stepping schemes for fractional evolution equations

    Get PDF
    In this work, we establish the maximal p\ell^p-regularity for several time stepping schemes for a fractional evolution model, which involves a fractional derivative of order α(0,2)\alpha\in(0,2), α1\alpha\neq 1, in time. These schemes include convolution quadratures generated by backward Euler method and second-order backward difference formula, the L1 scheme, explicit Euler method and a fractional variant of the Crank-Nicolson method. The main tools for the analysis include operator-valued Fourier multiplier theorem due to Weis [48] and its discrete analogue due to Blunck [10]. These results generalize the corresponding results for parabolic problems
    corecore