334 research outputs found

    Polynomial cubic splines with tension properties

    Get PDF
    In this paper we present a new class of spline functions with tension properties. These splines are composed by polynomial cubic pieces and therefore are conformal to the standard, NURBS based CAD/CAM systems

    Fast Isogeometric Boundary Element Method based on Independent Field Approximation

    Full text link
    An isogeometric boundary element method for problems in elasticity is presented, which is based on an independent approximation for the geometry, traction and displacement field. This enables a flexible choice of refinement strategies, permits an efficient evaluation of geometry related information, a mixed collocation scheme which deals with discontinuous tractions along non-smooth boundaries and a significant reduction of the right hand side of the system of equations for common boundary conditions. All these benefits are achieved without any loss of accuracy compared to conventional isogeometric formulations. The system matrices are approximated by means of hierarchical matrices to reduce the computational complexity for large scale analysis. For the required geometrical bisection of the domain, a strategy for the evaluation of bounding boxes containing the supports of NURBS basis functions is presented. The versatility and accuracy of the proposed methodology is demonstrated by convergence studies showing optimal rates and real world examples in two and three dimensions.Comment: 32 pages, 27 figure

    www.elsevier.com/locate/cagd A local fitting algorithm for converting planar curves to B-splines

    Get PDF
    In this paper we present a local fitting algorithm for converting smooth planar curves to B-splines. For a smooth planar curve a set of points together with their tangent vectors are first sampled from the curve such that the connected polygon approximates the curve with high accuracy and inflexions are detected by the sampled data efficiently. Then, a G1 continuous BĂ©zier spline curve is obtained by fitting the sampled data with shape preservation as well as within a prescribed accuracy. Finally, the BĂ©zier spline is merged into a C2 continuous B-spline curve by subdivision and control points adjustment. The merging is guaranteed to be within another error bound and with no more inflexions than the BĂ©zier spline. In addition to shape preserving and error control, this conversion algorithm also benefits that the knots are selected automatically and adaptively according to local shape and error bound. A few experimental results are included to demonstrate the validity and efficiency of the algorithm

    An Efficient Trim Structure for Rendering Large B-Rep Models

    Get PDF
    International audienceWe present a multiresolution trim structure for fast and accurate B-Rep model visualization. To get a good tradeoff between performance and visual accuracy, we propose to use a vectorial but approximated representation of the model that allows efficient, real-time GPU exploitation. Our structure, based on a quadtree, enables us to do shallow lookups for distant fragments. For closeups, we leverage hardware tessellation. We get interactive frame rates for models that consists of hundreds of thousands of B-Rep faces, regardless of the zoom level

    Proximity Queries for Absolutely Continuous Parametric Curves

    Full text link
    In motion planning problems for autonomous robots, such as self-driving cars, the robot must ensure that its planned path is not in close proximity to obstacles in the environment. However, the problem of evaluating the proximity is generally non-convex and serves as a significant computational bottleneck for motion planning algorithms. In this paper, we present methods for a general class of absolutely continuous parametric curves to compute: (i) the minimum separating distance, (ii) tolerance verification, and (iii) collision detection. Our methods efficiently compute bounds on obstacle proximity by bounding the curve in a convex region. This bound is based on an upper bound on the curve arc length that can be expressed in closed form for a useful class of parametric curves including curves with trigonometric or polynomial bases. We demonstrate the computational efficiency and accuracy of our approach through numerical simulations of several proximity problems.Comment: Proceedings of Robotics: Science and System

    Computing the minimum distance between a point and a NURBS curve

    Get PDF
    International audienceA new method is presented for computing the minimum distance between a point and a NURBS curve. It utilizes a circular clipping technique to eliminate the curve parts outside a circle with the test point as its center point. The radius of the elimination circle becomes smaller and smaller during the subdivision process. A simple condition for terminating the subdivision process is provided, which leads to very few subdivision steps in the new method. Examples are shown to illustrate the efficiency and robustness of the new method

    Extensions to OpenGL for CAGD.

    Get PDF
    Many computer graphic API’s, including OpenGL, emphasize modeling with rectangular patches, which are especially useful in Computer Aided Geomeric Design (CAGD). However, not all shapes are rectangular; some are triangular or more complex. This paper extends the OpenGL library to support the modeling of triangular patches, Coons patches, and Box-splines patches. Compared with the triangular patch created from degenerate rectangular Bezier patch with the existing functions provided by OpenGL, the triangular Bezier patches can be used in certain design situations and allow designers to achieve high-quality results that are less CPU intense and require less storage space. The addition of Coons patches and Box splines to the OpenGL library also give it more functionality. Both patch types give CAGD users more flexibility in designing surfaces. A library for all three patch types was developed as an addition to OpenGL

    Arbitrary topology meshes in geometric design and vector graphics

    Get PDF
    Meshes are a powerful means to represent objects and shapes both in 2D and 3D, but the techniques based on meshes can only be used in certain regular settings and restrict their usage. Meshes with an arbitrary topology have many interesting applications in geometric design and (vector) graphics, and can give designers more freedom in designing complex objects. In the first part of the thesis we look at how these meshes can be used in computer aided design to represent objects that consist of multiple regular meshes that are constructed together. Then we extend the B-spline surface technique from the regular setting to work on extraordinary regions in meshes so that multisided B-spline patches are created. In addition, we show how to render multisided objects efficiently, through using the GPU and tessellation. In the second part of the thesis we look at how the gradient mesh vector graphics primitives can be combined with procedural noise functions to create expressive but sparsely defined vector graphic images. We also look at how the gradient mesh can be extended to arbitrary topology variants. Here, we compare existing work with two new formulations of a polygonal gradient mesh. Finally we show how we can turn any image into a vector graphics image in an efficient manner. This vectorisation process automatically extracts important image features and constructs a mesh around it. This automatic pipeline is very efficient and even facilitates interactive image vectorisation

    Computing the minimum distance between two BĂ©zier curves

    Get PDF
    International audienceA sweeping sphere clipping method is presented for computing the minimum distance between two BĂ©zier curves. The sweeping sphere is constructed by rolling a sphere with its center point along a curve. The initial radius of the sweeping sphere can be set as the minimum distance between an end point and the other curve. The nearest point on a curve must be contained in the sweeping sphere along the other curve, and all of the parts outside the sweeping sphere can be eliminated. A simple sufficient condition when the nearest point is one of the two end points of a curve is provided, which turns the curve/curve case into a point/curve case and leads to higher efficiency. Examples are shown to illustrate efficiency and robustness of the new method
    • 

    corecore