36 research outputs found

    Automated Segmentation of Left and Right Ventricles in MRI and Classification of the Myocarfium Abnormalities

    Get PDF
    A fundamental step in diagnosis of cardiovascular diseases, automated left and right ventricle (LV and RV) segmentation in cardiac magnetic resonance images (MRI) is still acknowledged to be a difficult problem. Although algorithms for LV segmentation do exist, they require either extensive training or intensive user inputs. RV segmentation in MRI has yet to be solved and is still acknowledged a completely unsolved problem because its shape is not symmetric and circular, its deformations are complex and varies extensively over the cardiac phases, and it includes papillary muscles. In this thesis, I investigate fast detection of the LV endo- and epi-cardium surfaces (3D) and contours (2D) in cardiac MRI via convex relaxation and distribution matching. A rapid 3D segmentation of the RV in cardiac MRI via distribution matching constraints on segment shape and appearance is also investigated. These algorithms only require a single subject for training and a very simple user input, which amounts to one click. The solution is sought following the optimization of functionals containing probability product kernel constraints on the distributions of intensity and geometric features. The formulations lead to challenging optimization problems, which are not directly amenable to convex-optimization techniques. For each functional, the problem is split into a sequence of sub-problems, each of which can be solved exactly and globally via a convex relaxation and the augmented Lagrangian method. Finally, an information-theoretic based artificial neural network (ANN) is proposed for normal/abnormal LV myocardium motion classification. Using the LV segmentation results, the LV cavity points is estimated via a Kalman filter and a recursive dynamic Bayesian filter. However, due to the similarities between the statistical information of normal and abnormal points, differentiating between distributions of abnormal and normal points is a challenging problem. The problem was investigated with a global measure based on the Shannon\u27s differential entropy (SDE) and further examined with two other information-theoretic criteria, one based on Renyi entropy and the other on Fisher information. Unlike the existing information-theoretic studies, the approach addresses explicitly the overlap between the distributions of normal and abnormal cases, thereby yielding a competitive performance. I further propose an algorithm based on a supervised 3-layer ANN to differentiate between the distributions farther. The ANN is trained and tested by five different information measures of radial distance and velocity for points on endocardial boundary

    Foetal echocardiographic segmentation

    Get PDF
    Congenital heart disease affects just under one percentage of all live births [1]. Those defects that manifest themselves as changes to the cardiac chamber volumes are the motivation for the research presented in this thesis. Blood volume measurements in vivo require delineation of the cardiac chambers and manual tracing of foetal cardiac chambers is very time consuming and operator dependent. This thesis presents a multi region based level set snake deformable model applied in both 2D and 3D which can automatically adapt to some extent towards ultrasound noise such as attenuation, speckle and partial occlusion artefacts. The algorithm presented is named Mumford Shah Sarti Collision Detection (MSSCD). The level set methods presented in this thesis have an optional shape prior term for constraining the segmentation by a template registered to the image in the presence of shadowing and heavy noise. When applied to real data in the absence of the template the MSSCD algorithm is initialised from seed primitives placed at the centre of each cardiac chamber. The voxel statistics inside the chamber is determined before evolution. The MSSCD stops at open boundaries between two chambers as the two approaching level set fronts meet. This has significance when determining volumes for all cardiac compartments since cardiac indices assume that each chamber is treated in isolation. Comparison of the segmentation results from the implemented snakes including a previous level set method in the foetal cardiac literature show that in both 2D and 3D on both real and synthetic data, the MSSCD formulation is better suited to these types of data. All the algorithms tested in this thesis are within 2mm error to manually traced segmentation of the foetal cardiac datasets. This corresponds to less than 10% of the length of a foetal heart. In addition to comparison with manual tracings all the amorphous deformable model segmentations in this thesis are validated using a physical phantom. The volume estimation of the phantom by the MSSCD segmentation is to within 13% of the physically determined volume

    Image based approach for early assessment of heart failure.

    Get PDF
    In diagnosing heart diseases, the estimation of cardiac performance indices requires accurate segmentation of the left ventricle (LV) wall from cine cardiac magnetic resonance (CMR) images. MR imaging is noninvasive and generates clear images; however, it is impractical to manually process the huge number of images generated to calculate the performance indices. In this dissertation, we introduce a novel, fast, robust, bi-directional coupled parametric deformable models that are capable of segmenting the LV wall borders using first- and second-order visual appearance features. These features are embedded in a new stochastic external force that preserves the topology of the LV wall to track the evolution of the parametric deformable models control points. We tested the proposed segmentation approach on 15 data sets in 6 infarction patients using the Dice similarity coefficient (DSC) and the average distance (AD) between the ground truth and automated segmentation contours. Our approach achieves a mean DSC value of 0.926±0.022 and mean AD value of 2.16±0.60 mm compared to two other level set methods that achieve mean DSC values of 0.904±0.033 and 0.885±0.02; and mean AD values of 2.86±1.35 mm and 5.72±4.70 mm, respectively. Also, a novel framework for assessing both 3D functional strain and wall thickening from 4D cine cardiac magnetic resonance imaging (CCMR) is introduced. The introduced approach is primarily based on using geometrical features to track the LV wall during the cardiac cycle. The 4D tracking approach consists of the following two main steps: (i) Initially, the surface points on the LV wall are tracked by solving a 3D Laplace equation between two subsequent LV surfaces; and (ii) Secondly, the locations of the tracked LV surface points are iteratively adjusted through an energy minimization cost function using a generalized Gauss-Markov random field (GGMRF) image model in order to remove inconsistencies and preserve the anatomy of the heart wall during the tracking process. Then the circumferential strains are straight forward calculated from the location of the tracked LV surface points. In addition, myocardial wall thickening is estimated by co-allocation of the corresponding points, or matches between the endocardium and epicardium surfaces of the LV wall using the solution of the 3D laplace equation. Experimental results on in vivo data confirm the accuracy and robustness of our method. Moreover, the comparison results demonstrate that our approach outperforms 2D wall thickening estimation approaches

    Computational Methods for Segmentation of Multi-Modal Multi-Dimensional Cardiac Images

    Get PDF
    Segmentation of the heart structures helps compute the cardiac contractile function quantified via the systolic and diastolic volumes, ejection fraction, and myocardial mass, representing a reliable diagnostic value. Similarly, quantification of the myocardial mechanics throughout the cardiac cycle, analysis of the activation patterns in the heart via electrocardiography (ECG) signals, serve as good cardiac diagnosis indicators. Furthermore, high quality anatomical models of the heart can be used in planning and guidance of minimally invasive interventions under the assistance of image guidance. The most crucial step for the above mentioned applications is to segment the ventricles and myocardium from the acquired cardiac image data. Although the manual delineation of the heart structures is deemed as the gold-standard approach, it requires significant time and effort, and is highly susceptible to inter- and intra-observer variability. These limitations suggest a need for fast, robust, and accurate semi- or fully-automatic segmentation algorithms. However, the complex motion and anatomy of the heart, indistinct borders due to blood flow, the presence of trabeculations, intensity inhomogeneity, and various other imaging artifacts, makes the segmentation task challenging. In this work, we present and evaluate segmentation algorithms for multi-modal, multi-dimensional cardiac image datasets. Firstly, we segment the left ventricle (LV) blood-pool from a tri-plane 2D+time trans-esophageal (TEE) ultrasound acquisition using local phase based filtering and graph-cut technique, propagate the segmentation throughout the cardiac cycle using non-rigid registration-based motion extraction, and reconstruct the 3D LV geometry. Secondly, we segment the LV blood-pool and myocardium from an open-source 4D cardiac cine Magnetic Resonance Imaging (MRI) dataset by incorporating average atlas based shape constraint into the graph-cut framework and iterative segmentation refinement. The developed fast and robust framework is further extended to perform right ventricle (RV) blood-pool segmentation from a different open-source 4D cardiac cine MRI dataset. Next, we employ convolutional neural network based multi-task learning framework to segment the myocardium and regress its area, simultaneously, and show that segmentation based computation of the myocardial area is significantly better than that regressed directly from the network, while also being more interpretable. Finally, we impose a weak shape constraint via multi-task learning framework in a fully convolutional network and show improved segmentation performance for LV, RV and myocardium across healthy and pathological cases, as well as, in the challenging apical and basal slices in two open-source 4D cardiac cine MRI datasets. We demonstrate the accuracy and robustness of the proposed segmentation methods by comparing the obtained results against the provided gold-standard manual segmentations, as well as with other competing segmentation methods

    Doctor of Philosophy

    Get PDF
    dissertationCongenital heart defects are classes of birth defects that affect the structure and function of the heart. These defects are attributed to the abnormal or incomplete development of a fetal heart during the first few weeks following conception. The overall detection rate of congenital heart defects during routine prenatal examination is low. This is attributed to the insufficient number of trained personnel in many local health centers where many cases of congenital heart defects go undetected. This dissertation presents a system to identify congenital heart defects to improve pregnancy outcomes and increase their detection rates. The system was developed and its performance assessed in identifying the presence of ventricular defects (congenital heart defects that affect the size of the ventricles) using four-dimensional fetal chocardiographic images. The designed system consists of three components: 1) a fetal heart location estimation component, 2) a fetal heart chamber segmentation component, and 3) a detection component that detects congenital heart defects from the segmented chambers. The location estimation component is used to isolate a fetal heart in any four-dimensional fetal echocardiographic image. It uses a hybrid region of interest extraction method that is robust to speckle noise degradation inherent in all ultrasound images. The location estimation method's performance was analyzed on 130 four-dimensional fetal echocardiographic images by comparison with manually identified fetal heart region of interest. The location estimation method showed good agreement with the manually identified standard using four quantitative indexes: Jaccard index, Sørenson-Dice index, Sensitivity index and Specificity index. The average values of these indexes were measured at 80.70%, 89.19%, 91.04%, and 99.17%, respectively. The fetal heart chamber segmentation component uses velocity vector field estimates computed on frames contained in a four-dimensional image to identify the fetal heart chambers. The velocity vector fields are computed using a histogram-based optical flow technique which is formulated on local image characteristics to reduces the effect of speckle noise and nonuniform echogenicity on the velocity vector field estimates. Features based on the velocity vector field estimates, voxel brightness/intensity values, and voxel Cartesian coordinate positions were extracted and used with kernel k-means algorithm to identify the individual chambers. The segmentation method's performance was evaluated on 130 images from 31 patients by comparing the segmentation results with manually identified fetal heart chambers. Evaluation was based on the Sørenson-Dice index, the absolute volume difference and the Hausdorff distance, with each resulting in per patient average values of 69.92%, 22.08%, and 2.82 mm, respectively. The detection component uses the volumes of the identified fetal heart chambers to flag the possible occurrence of hypoplastic left heart syndrome, a type of congenital heart defect. An empirical volume threshold defined on the relative ratio of adjacent fetal heart chamber volumes obtained manually is used in the detection process. The performance of the detection procedure was assessed by comparison with a set of images with confirmed diagnosis of hypoplastic left heart syndrome and a control group of normal fetal hearts. Of the 130 images considered 18 of 20 (90%) fetal hearts were correctly detected as having hypoplastic left heart syndrome and 84 of 110 (76.36%) fetal hearts were correctly detected as normal in the control group. The results show that the detection system performs better than the overall detection rate for congenital heart defect which is reported to be between 30% and 60%

    Fast fully automatic myocardial segmentation in 4D cine cardiac magnetic resonance datasets

    Get PDF
    Dissertação de mestrado integrado em Engenharia BiomédicaCardiovascular diseases (CVDs) are the leading cause of death in the world, representing 30% of all global deaths. Among others, assessment of the left ventricular (LV) morphology and global function using non-invasive cardiac imaging is an interesting technique for diagnosis and treatment follow-up of patients with CVDs. Nowadays, cardiac magnetic resonance (CMR) imaging is the gold-standard technique for the quantification of LV volumes, mass and ejection fraction, requiring the delineation of endocardial and epicardial contours of the left ventricle from cine MR images. In clinical practice, the physicians perform this segmentation manually, being a tedious, time consuming and unpractical task. Even though several (semi-)automated methods have been presented for LV CMR segmentation, fast, automatic and optimal boundaries assessment is still lacking, usually requiring the physician to manually correct the contours. In the present work, we propose a novel fast fully automatic 3D+time LV segmentation framework for CMR datasets. The proposed framework presents three conceptual blocks: 1) an automatic 2D mid-ventricular initialization and segmentation; 2) an automatic stack initialization followed by a 3D segmentation at the end-diastolic phase; and 3) a tracking procedure to delineate both endo and epicardial contours throughout the cardiac cycle. In each block, specific CMR-targeted algorithms are proposed for the different steps required. Hereto, we propose automatic and feasible initialization procedures. Moreover, we adapt the recent B-spline Explicit Active Surfaces (BEAS) framework to the properties of CMR image segmentation by integrating dedicated energy terms and making use of a cylindrical coordinate system that better fits the topology of CMR data. At last, two tracking methods are presented and compared. The proposed framework has been validated on 45 4D CMR datasets from a publicly available database and on a large database from an ongoing multi-center clinical trial with 318 4D datasets. In the technical validation, the framework showed competitive results against the state-of-the-art methods, presenting leading results in both accuracy and average computational time in the common database used for comparative purposes. Moreover, the results in the large scale clinical validation confirmed the high feasibility and robustness of the proposed framework for accurate LV morphology and global function assessment. In combination with the low computational burden of the method, the present methodology seems promising to be used in daily clinical practice.As doenças cardiovasculares (DCVs) são a principal causa de morte no mundo, representando 30% destas a nível global. Na prática clínica, uma técnica empregue no diagnóstico de pacientes com DCVs é a avaliação da morfologia e da função global do ventrículo esquerdo (VE), através de técnicas de imagiologia não-invasivas. Atualmente, a ressonância magnética cardíaca (RMC) é a modalidade de referência na quantificação dos volumes, massa e fração de ejeção do VE, exigindo a delimitação dos contornos do endocárdio e epicárdio a partir de imagens dinâmicas de RMC. Na prática clínica diária, o método preferencial é a segmentação manual. No entanto, esta é uma tarefa demorada, sujeita a erro humano e pouco prática. Apesar de até à data diversos métodos (semi)-automáticos terem sido apresentados para a segmentação do VE em imagens de RMC, ainda não existe um método capaz de avaliar idealmente os contornos de uma forma automática, rápida e precisa, levando a que geralmente o médico necessite de corrigir manualmente os contornos. No presente trabalho é proposta uma nova framework para a segmentação automática do VE em imagens 3D+tempo de RMC. O algoritmo apresenta três blocos principais: 1) uma inicialização e segmentação automática 2D num corte medial do ventrículo; 2) uma inicialização e segmentação tridimensional no volume correspondente ao final da diástole; e 3) um algoritmo de tracking para obter os contornos ao longo de todo o ciclo cardíaco. Neste sentido, são propostos procedimentos de inicialização automática com elevada robustez. Mais ainda, é proposta uma adaptação da recente framework “B-spline Explicit Active Surfaces” (BEAS) com a integração de uma energia específica para as imagens de RMC e utilizando uma formulação cilíndrica para tirar partido da topologia destas imagens. Por último, são apresentados e comparados dois algoritmos de tracking para a obtenção dos contornos ao longo do tempo. A framework proposta foi validada em 45 datasets de RMC provenientes de uma base de dados disponível ao público, bem como numa extensa base de dados com 318 datasets para uma validação clínica. Na avaliação técnica, a framework proposta obteve resultados competitivos quando comparada com outros métodos do estado da arte, tendo alcançado resultados de precisão e tempo computacional superiores a estes. Na validação clínica em larga escala, a framework provou apresentar elevada viabilidade e robustez na avaliação da morfologia e função global do VE. Em combinação com o baixo custo computacional do algoritmo, a presente metodologia apresenta uma perspetiva promissora para a sua aplicação na prática clínica diária

    Segmentation of 3D Carotid Ultrasound Images Using Weak Geometric Priors

    Get PDF
    Vascular diseases are among the leading causes of death in Canada and around the globe. A major underlying cause of most such medical conditions is atherosclerosis, a gradual accumulation of plaque on the walls of blood vessels. Particularly vulnerable to atherosclerosis is the carotid artery, which carries blood to the brain. Dangerous narrowing of the carotid artery can lead to embolism, a dislodgement of plaque fragments which travel to the brain and are the cause of most strokes. If this pathology can be detected early, such a deadly scenario can be potentially prevented through treatment or surgery. This not only improves the patient's prognosis, but also dramatically lowers the overall cost of their treatment. Medical imaging is an indispensable tool for early detection of atherosclerosis, in particular since the exact location and shape of the plaque need to be known for accurate diagnosis. This can be achieved by locating the plaque inside the artery and measuring its volume or texture, a process which is greatly aided by image segmentation. In particular, the use of ultrasound imaging is desirable because it is a cost-effective and safe modality. However, ultrasonic images depict sound-reflecting properties of tissue, and thus suffer from a number of unique artifacts not present in other medical images, such as acoustic shadowing, speckle noise and discontinuous tissue boundaries. A robust ultrasound image segmentation technique must take these properties into account. Prior to segmentation, an important pre-processing step is the extraction of a series of features from the image via application of various transforms and non-linear filters. A number of such features are explored and evaluated, many of them resulting in piecewise smooth images. It is also proposed to decompose the ultrasound image into several statistically distinct components. These components can be then used as features directly, or other features can be obtained from them instead of the original image. The decomposition scheme is derived using Maximum-a-Posteriori estimation framework and is efficiently computable. Furthermore, this work presents and evaluates an algorithm for segmenting the carotid artery in 3D ultrasound images from other tissues. The algorithm incorporates information from different sources using an energy minimization framework. Using the ultrasound image itself, statistical differences between the region of interest and its background are exploited, and maximal overlap with strong image edges encouraged. In order to aid the convergence to anatomically accurate shapes, as well as to deal with the above-mentioned artifacts, prior knowledge is incorporated into the algorithm by using weak geometric priors. The performance of the algorithm is tested on a number of available 3D images, and encouraging results are obtained and discussed
    corecore