2,798 research outputs found

    Revisión de la optimización de Bess en sistemas de potencia

    Get PDF
    The increasing penetration of Distributed Energy Resources has imposed several challenges in the analysis and operation of power systems, mainly due to the uncertainties in primary resource. In the last decade, implementation of Battery Energy Storage Systems in electric networks has caught the interest in research since the results have shown multiple positive effects when deployed optimally. In this paper, a review in the optimization of battery storage systems in power systems is presented. Firstly, an overview of the context in which battery storage systems are implemented, their operation framework, chemistries and a first glance of optimization is shown. Then, formulations and optimization frameworks are detailed for optimization problems found in recent literature. Next, A review of the optimization techniques implemented or proposed, and a basic explanation of the more recurrent ones is presented. Finally, the results of the review are discussed. It is concluded that optimization problems involving battery storage systems are a trending topic for research, in which a vast quantity of more complex formulations have been proposed for Steady State and Transient Analysis, due to the inclusion of stochasticity, multi-periodicity and multi-objective frameworks. It was found that the use of Metaheuristics is dominant in the analysis of complex, multivariate and multi-objective problems while relaxations, simplifications, linearization, and single objective adaptations have enabled the use of traditional, more efficient, and exact techniques. Hybridization in metaheuristics has been important topic of research that has shown better results in terms of efficiency and solution quality.La creciente penetración de recursos distribuidos ha impuesto desafíos en el análisis y operación de sistemas de potencia, principalmente debido a incertidumbres en los recursos primarios. En la última década, la implementación de sistemas de almacenamiento por baterías en redes eléctricas ha captado el interés en la investigación, ya que los resultados han demostrado efectos positivos cuando se despliegan óptimamente. En este trabajo se presenta una revisión de la optimización de sistemas de almacenamiento por baterías en sistemas de potencia. Pare ello se procedió, primero, a mostrar el contexto en el cual se implementan los sistemas de baterías, su marco de operación, las tecnologías y las bases de optimización. Luego, fueron detallados la formulación y el marco de optimización de algunos de los problemas de optimización encontrados en literatura reciente. Posteriormente se presentó una revisión de las técnicas de optimización implementadas o propuestas recientemente y una explicación básica de las técnicas más recurrentes. Finalmente, se discutieron los resultados de la revisión. Se obtuvo como resultados que los problemas de optimización con sistemas de almacenamiento por baterías son un tema de tendencia para la investigación, en el que se han propuesto diversas formulaciones para el análisis en estado estacionario y transitorio, en problemas multiperiodo que incluyen la estocasticidad y formulaciones multiobjetivo. Adicionalmente, se encontró que el uso de técnicas metaheurísticas es dominante en el análisis de problemas complejos, multivariados y multiobjetivo, mientras que la implementación de relajaciones, simplificaciones, linealizaciones y la adaptación mono-objetivo ha permitido el uso de técnicas más eficientes y exactas. La hibridación de técnicas metaheurísticas ha sido un tema relevante para la investigación que ha mostrado mejorías en los resultados en términos de eficiencia y calidad de las soluciones

    Optimal Scheduling of Energy Storage Using A New Priority-Based Smart Grid Control Method

    Get PDF
    This paper presents a method to optimally use an energy storage system (such as a battery) on a microgrid with load and photovoltaic generation. The purpose of the method is to employ the photovoltaic generation and energy storage systems to reduce the main grid bill, which includes an energy cost and a power peak cost. The method predicts the loads and generation power of each day, and then searches for an optimal storage behavior plan for the energy storage system according to these predictions. However, this plan is not followed in an open-loop control structure as in previous publications, but provided to a real-time decision algorithm, which also considers real power measures. This algorithm considers a series of device priorities in addition to the storage plan, which makes it robust enough to comply with unpredicted situations. The whole proposed method is implemented on a real-hardware test bench, with its different steps being distributed between a personal computer and a programmable logic controller according to their time scale. When compared to a different state-of-the-art method, the proposed method is concluded to better adjust the energy storage system usage to the photovoltaic generation and general consumption.Unión Europea ID 100205Unión Europea ID 26937

    Optimal Flow for Multi-Carrier Energy System at Community Level

    Get PDF

    Supervisory model predictive control of building integrated renewable and low carbon energy systems

    Get PDF
    To reduce fossil fuel consumption and carbon emission in the building sector, renewable and low carbon energy technologies are integrated in building energy systems to supply all or part of the building energy demand. In this research, an optimal supervisory controller is designed to optimize the operational cost and the CO2 emission of the integrated energy systems. For this purpose, the building energy system is defined and its boundary, components (subsystems), inputs and outputs are identified. Then a mathematical model of the components is obtained. For mathematical modelling of the energy system, a unified modelling method is used. With this method, many different building energy systems can be modelled uniformly. Two approaches are used; multi-period optimization and hybrid model predictive control. In both approaches the optimization problem is deterministic, so that at each time step the energy consumption of the building, and the available renewable energy are perfectly predicted for the prediction horizon. The controller is simulated in three different applications. In the first application the controller is used for a system consisting of a micro-combined heat and power system with an auxiliary boiler and a hot water storage tank. In this application the controller reduces the operational cost and CO2 emission by 7.31 percent and 5.19 percent respectively, with respect to the heat led operation. In the second application the controller is used to control a farm electrification system consisting of PV panels, a diesel generator and a battery bank. In this application the operational cost with respect to the common load following strategy is reduced by 3.8 percent. In the third application the controller is used to control a hybrid off-grid power system consisting of PV panels, a battery bank, an electrolyzer, a hydrogen storage tank and a fuel cell. In this application the controller maximizes the total stored energies in the battery bank and the hydrogen storage tank

    Stochastic planning of electric vehicle charging station integrated with photovoltaic and battery systems

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/166260/1/gtd2bf00020.pd

    Decentralized Greedy-Based Algorithm for Smart Energy Management in Plug-in Electric Vehicle Energy Distribution Systems

    Get PDF
    Variations in electricity tariffs arising due to stochastic demand loads on the power grids have stimulated research in finding optimal charging/discharging scheduling solutions for electric vehicles (EVs). Most of the current EV scheduling solutions are either centralized, which suffer from low reliability and high complexity, while existing decentralized solutions do not facilitate the efficient scheduling of on-move EVs in large-scale networks considering a smart energy distribution system. Motivated by smart cities applications, we consider in this paper the optimal scheduling of EVs in a geographically large-scale smart energy distribution system where EVs have the flexibility of charging/discharging at spatially-deployed smart charging stations (CSs) operated by individual aggregators. In such a scenario, we define the social welfare maximization problem as the total profit of both supply and demand sides in the form of a mixed integer non-linear programming (MINLP) model. Due to the intractability, we then propose an online decentralized algorithm with low complexity which utilizes effective heuristics to forward each EV to the most profitable CS in a smart manner. Results of simulations on the IEEE 37 bus distribution network verify that the proposed algorithm improves the social welfare by about 30% on average with respect to an alternative scheduling strategy under the equal participation of EVs in charging and discharging operations. Considering the best-case performance where only EV profit maximization is concerned, our solution also achieves upto 20% improvement in flatting the final electricity load. Furthermore, the results reveal the existence of an optimal number of CSs and an optimal vehicle-to-grid penetration threshold for which the overall profit can be maximized. Our findings serve as guidelines for V2G system designers in smart city scenarios to plan a cost-effective strategy for large-scale EVs distributed energy management
    corecore