1,111 research outputs found

    Joint Spectral Radius and Path-Complete Graph Lyapunov Functions

    Full text link
    We introduce the framework of path-complete graph Lyapunov functions for approximation of the joint spectral radius. The approach is based on the analysis of the underlying switched system via inequalities imposed among multiple Lyapunov functions associated to a labeled directed graph. Inspired by concepts in automata theory and symbolic dynamics, we define a class of graphs called path-complete graphs, and show that any such graph gives rise to a method for proving stability of the switched system. This enables us to derive several asymptotically tight hierarchies of semidefinite programming relaxations that unify and generalize many existing techniques such as common quadratic, common sum of squares, and maximum/minimum-of-quadratics Lyapunov functions. We compare the quality of approximation obtained by certain classes of path-complete graphs including a family of dual graphs and all path-complete graphs with two nodes on an alphabet of two matrices. We provide approximation guarantees for several families of path-complete graphs, such as the De Bruijn graphs, establishing as a byproduct a constructive converse Lyapunov theorem for maximum/minimum-of-quadratics Lyapunov functions.Comment: To appear in SIAM Journal on Control and Optimization. Version 2 has gone through two major rounds of revision. In particular, a section on the performance of our algorithm on application-motivated problems has been added and a more comprehensive literature review is presente

    Polynomial Optimization with Applications to Stability Analysis and Control - Alternatives to Sum of Squares

    Full text link
    In this paper, we explore the merits of various algorithms for polynomial optimization problems, focusing on alternatives to sum of squares programming. While we refer to advantages and disadvantages of Quantifier Elimination, Reformulation Linear Techniques, Blossoming and Groebner basis methods, our main focus is on algorithms defined by Polya's theorem, Bernstein's theorem and Handelman's theorem. We first formulate polynomial optimization problems as verifying the feasibility of semi-algebraic sets. Then, we discuss how Polya's algorithm, Bernstein's algorithm and Handelman's algorithm reduce the intractable problem of feasibility of semi-algebraic sets to linear and/or semi-definite programming. We apply these algorithms to different problems in robust stability analysis and stability of nonlinear dynamical systems. As one contribution of this paper, we apply Polya's algorithm to the problem of H_infinity control of systems with parametric uncertainty. Numerical examples are provided to compare the accuracy of these algorithms with other polynomial optimization algorithms in the literature.Comment: AIMS Journal of Discrete and Continuous Dynamical Systems - Series

    On feedback stabilization of linear switched systems via switching signal control

    Full text link
    Motivated by recent applications in control theory, we study the feedback stabilizability of switched systems, where one is allowed to chose the switching signal as a function of x(t)x(t) in order to stabilize the system. We propose new algorithms and analyze several mathematical features of the problem which were unnoticed up to now, to our knowledge. We prove complexity results, (in-)equivalence between various notions of stabilizability, existence of Lyapunov functions, and provide a case study for a paradigmatic example introduced by Stanford and Urbano.Comment: 19 pages, 3 figure
    corecore