1,536 research outputs found

    On the dimension of max-min convex sets

    Get PDF
    We introduce a notion of dimension of max-min convex sets, following the approach of tropical convexity. We introduce a max-min analogue of the tropical rank of a matrix and show that it is equal to the dimension of the associated polytope. We describe the relation between this rank and the notion of strong regularity in max-min algebra, which is traditionally defined in terms of unique solvability of linear systems and trapezoidal property.Comment: 19 pages, v2: many corrections in the proof

    Fuzzy games with a countable space of actions and applications to systems of generalized quasi-variational inequalities

    Get PDF
    In this paper, we introduce an abstract fuzzy economy (generalized fuzzy game) model with a countable space of actions and we study the existence of the fuzzy equilibrium. As applications, two types of results are obtained. The first ones concern the existence of the solutions for systems of generalized quasi-variational inequalities with random fuzzy mappings which we define. The last ones are new random fixed point theorems for correspondences with values in complete countable metric spaces.Comment: 18 page

    Convex Hull of Points Lying on Lines in o(n log n) Time after Preprocessing

    Full text link
    Motivated by the desire to cope with data imprecision, we study methods for taking advantage of preliminary information about point sets in order to speed up the computation of certain structures associated with them. In particular, we study the following problem: given a set L of n lines in the plane, we wish to preprocess L such that later, upon receiving a set P of n points, each of which lies on a distinct line of L, we can construct the convex hull of P efficiently. We show that in quadratic time and space it is possible to construct a data structure on L that enables us to compute the convex hull of any such point set P in O(n alpha(n) log* n) expected time. If we further assume that the points are "oblivious" with respect to the data structure, the running time improves to O(n alpha(n)). The analysis applies almost verbatim when L is a set of line-segments, and yields similar asymptotic bounds. We present several extensions, including a trade-off between space and query time and an output-sensitive algorithm. We also study the "dual problem" where we show how to efficiently compute the (<= k)-level of n lines in the plane, each of which lies on a distinct point (given in advance). We complement our results by Omega(n log n) lower bounds under the algebraic computation tree model for several related problems, including sorting a set of points (according to, say, their x-order), each of which lies on a given line known in advance. Therefore, the convex hull problem under our setting is easier than sorting, contrary to the "standard" convex hull and sorting problems, in which the two problems require Theta(n log n) steps in the worst case (under the algebraic computation tree model).Comment: 26 pages, 5 figures, 1 appendix; a preliminary version appeared at SoCG 201
    corecore