2,685 research outputs found

    Fast, Safe, and Propellant-Efficient Spacecraft Planning under Clohessy-Wiltshire-Hill Dynamics

    Full text link
    This paper presents a sampling-based motion planning algorithm for real-time and propellant-optimized autonomous spacecraft trajectory generation in near-circular orbits. Specifically, this paper leverages recent algorithmic advances in the field of robot motion planning to the problem of impulsively-actuated, propellant-optimized rendezvous and proximity operations under the Clohessy-Wiltshire-Hill (CWH) dynamics model. The approach calls upon a modified version of the Fast Marching Tree (FMT*) algorithm to grow a set of feasible trajectories over a deterministic, low-dispersion set of sample points covering the free state space. To enforce safety, the tree is only grown over the subset of actively-safe samples, from which there exists a feasible one-burn collision avoidance maneuver that can safely circularize the spacecraft orbit along its coasting arc under a given set of potential thruster failures. Key features of the proposed algorithm include: (i) theoretical guarantees in terms of trajectory safety and performance, (ii) amenability to real-time implementation, and (iii) generality, in the sense that a large class of constraints can be handled directly. As a result, the proposed algorithm offers the potential for widespread application, ranging from on-orbit satellite servicing to orbital debris removal and autonomous inspection missions.Comment: Submitted to the AIAA Journal of Guidance, Control, and Dynamics (JGCD) special issue entitled "Computational Guidance and Control". This submission is the journal version corresponding to the conference manuscript "Real-Time, Propellant-Efficient Spacecraft Planning under Clohessy-Wiltshire-Hill Dynamics" accepted to the 2016 IEEE Aerospace Conference in Big Sky, MT, US

    Safe non-smooth black-box optimization with application to policy search

    Full text link
    For safety-critical black-box optimization tasks, observations of the constraints and the objective are often noisy and available only for the feasible points. We propose an approach based on log barriers to find a local solution of a non-convex non-smooth black-box optimization problem minf0(x)\min f^0(x) subject to fi(x)0, i=1,,mf^i(x)\leq 0,~ i = 1,\ldots, m, at the same time, guaranteeing constraint satisfaction while learning an optimal solution with high probability. Our proposed algorithm exploits noisy observations to iteratively improve on an initial safe point until convergence. We derive the convergence rate and prove safety of our algorithm. We demonstrate its performance in an application to an iterative control design problem

    Real-Time Stochastic Kinodynamic Motion Planning via Multiobjective Search on GPUs

    Full text link
    In this paper we present the PUMP (Parallel Uncertainty-aware Multiobjective Planning) algorithm for addressing the stochastic kinodynamic motion planning problem, whereby one seeks a low-cost, dynamically-feasible motion plan subject to a constraint on collision probability (CP). To ensure exhaustive evaluation of candidate motion plans (as needed to tradeoff the competing objectives of performance and safety), PUMP incrementally builds the Pareto front of the problem, accounting for the optimization objective and an approximation of CP. This is performed by a massively parallel multiobjective search, here implemented with a focus on GPUs. Upon termination of the exploration phase, PUMP searches the Pareto set of motion plans to identify the lowest cost solution that is certified to satisfy the CP constraint (according to an asymptotically exact estimator). We introduce a novel particle-based CP approximation scheme, designed for efficient GPU implementation, which accounts for dependencies over the history of a trajectory execution. We present numerical experiments for quadrotor planning wherein PUMP identifies solutions in ~100 ms, evaluating over one hundred thousand partial plans through the course of its exploration phase. The results show that this multiobjective search achieves a lower motion plan cost, for the same CP constraint, compared to a safety buffer-based search heuristic and repeated RRT trials

    Continuous-Time Gaussian Process Motion Planning via Probabilistic Inference

    Full text link
    We introduce a novel formulation of motion planning, for continuous-time trajectories, as probabilistic inference. We first show how smooth continuous-time trajectories can be represented by a small number of states using sparse Gaussian process (GP) models. We next develop an efficient gradient-based optimization algorithm that exploits this sparsity and GP interpolation. We call this algorithm the Gaussian Process Motion Planner (GPMP). We then detail how motion planning problems can be formulated as probabilistic inference on a factor graph. This forms the basis for GPMP2, a very efficient algorithm that combines GP representations of trajectories with fast, structure-exploiting inference via numerical optimization. Finally, we extend GPMP2 to an incremental algorithm, iGPMP2, that can efficiently replan when conditions change. We benchmark our algorithms against several sampling-based and trajectory optimization-based motion planning algorithms on planning problems in multiple environments. Our evaluation reveals that GPMP2 is several times faster than previous algorithms while retaining robustness. We also benchmark iGPMP2 on replanning problems, and show that it can find successful solutions in a fraction of the time required by GPMP2 to replan from scratch.Comment: The International Journal of Robotics Research (IJRR), 2018, Volume 37, Issue 1

    An Accelerated Linearized Alternating Direction Method of Multipliers

    Full text link
    We present a novel framework, namely AADMM, for acceleration of linearized alternating direction method of multipliers (ADMM). The basic idea of AADMM is to incorporate a multi-step acceleration scheme into linearized ADMM. We demonstrate that for solving a class of convex composite optimization with linear constraints, the rate of convergence of AADMM is better than that of linearized ADMM, in terms of their dependence on the Lipschitz constant of the smooth component. Moreover, AADMM is capable to deal with the situation when the feasible region is unbounded, as long as the corresponding saddle point problem has a solution. A backtracking algorithm is also proposed for practical performance

    The Convex Feasible Set Algorithm for Real Time Optimization in Motion Planning

    Full text link
    With the development of robotics, there are growing needs for real time motion planning. However, due to obstacles in the environment, the planning problem is highly non-convex, which makes it difficult to achieve real time computation using existing non-convex optimization algorithms. This paper introduces the convex feasible set algorithm (CFS) which is a fast algorithm for non-convex optimization problems that have convex costs and non-convex constraints. The idea is to find a convex feasible set for the original problem and iteratively solve a sequence of subproblems using the convex constraints. The feasibility and the convergence of the proposed algorithm are proved in the paper. The application of this method on motion planning for mobile robots is discussed. The simulations demonstrate the effectiveness of the proposed algorithm.Comment: in SIAM Journal on Control and Optimizatio

    Zeroth-order Nonconvex Stochastic Optimization: Handling Constraints, High-Dimensionality and Saddle-Points

    Full text link
    In this paper, we propose and analyze zeroth-order stochastic approximation algorithms for nonconvex and convex optimization, with a focus on addressing constrained optimization, high-dimensional setting and saddle-point avoiding. To handle constrained optimization, we first propose generalizations of the conditional gradient algorithm achieving rates similar to the standard stochastic gradient algorithm using only zeroth-order information. To facilitate zeroth-order optimization in high-dimensions, we explore the advantages of structural sparsity assumptions. Specifically, (i) we highlight an implicit regularization phenomenon where the standard stochastic gradient algorithm with zeroth-order information adapts to the sparsity of the problem at hand by just varying the step-size and (ii) propose a truncated stochastic gradient algorithm with zeroth-order information, whose rate of convergence depends only poly-logarithmically on the dimensionality. We next focus on avoiding saddle-points in non-convex setting. Towards that, we interpret the Gaussian smoothing technique for estimating gradient based on zeroth-order information as an instantiation of first-order Stein's identity. Based on this, we provide a novel linear-(in dimension) time estimator of the Hessian matrix of a function using only zeroth-order information, which is based on second-order Stein's identity. We then provide an algorithm for avoiding saddle-points, which is based on a zeroth-order cubic regularization Newton's method and discuss its convergence rates

    Projection Neural Network for a Class of Sparse Regression Problems with Cardinality Penalty

    Full text link
    In this paper, we consider a class of sparse regression problems, whose objective function is the summation of a convex loss function and a cardinality penalty. By constructing a smoothing function for the cardinality function, we propose a projected neural network and design a correction method for solving this problem. The solution of the proposed neural network is unique, global existent, bounded and globally Lipschitz continuous. Besides, we prove that all accumulation points of the proposed neural network have a common support set and a unified lower bound for the nonzero entries. Combining the proposed neural network with the correction method, any corrected accumulation point is a local minimizer of the considered sparse regression problem. Moreover, we analyze the equivalent relationship on the local minimizers between the considered sparse regression problem and another regression sparse problem. Finally, some numerical experiments are provided to show the efficiency of the proposed neural networks in solving some sparse regression problems in practice

    SERoCS: Safe and Efficient Robot Collaborative Systems for Next Generation Intelligent Industrial Co-Robots

    Full text link
    Human-robot collaborations have been recognized as an essential component for future factories. It remains challenging to properly design the behavior of those co-robots. Those robots operate in dynamic uncertain environment with limited computation capacity. The design objective is to maximize their task efficiency while guaranteeing safety. This paper discusses a set of design principles of a safe and efficient robot collaboration system (SERoCS) for the next generation co-robots, which consists of robust cognition algorithms for environment monitoring, efficient task planning algorithms for reference generations, and safe motion planning and control algorithms for safe human-robot interactions. The proposed SERoCS will address the design challenges and significantly expand the skill sets of the co-robots to allow them to work safely and efficiently with their human counterparts. The development of SERoCS will create a significant advancement toward adoption of co-robots in various industries. The experiments validate the effectiveness of SERoCS.Comment: 19 page

    Monte Carlo Motion Planning for Robot Trajectory Optimization Under Uncertainty

    Full text link
    This article presents a novel approach, named MCMP (Monte Carlo Motion Planning), to the problem of motion planning under uncertainty, i.e., to the problem of computing a low-cost path that fulfills probabilistic collision avoidance constraints. MCMP estimates the collision probability (CP) of a given path by sampling via Monte Carlo the execution of a reference tracking controller (in this paper we consider LQG). The key algorithmic contribution of this paper is the design of statistical variance-reduction techniques, namely control variates and importance sampling, to make such a sampling procedure amenable to real-time implementation. MCMP applies this CP estimation procedure to motion planning by iteratively (i) computing an (approximately) optimal path for the deterministic version of the problem (here, using the FMT* algorithm), (ii) computing the CP of this path, and (iii) inflating or deflating the obstacles by a common factor depending on whether the CP is higher or lower than a target value. The advantages of MCMP are threefold: (i) asymptotic correctness of CP estimation, as opposed to most current approximations, which, as shown in this paper, can be off by large multiples and hinder the computation of feasible plans; (ii) speed and parallelizability, and (iii) generality, i.e., the approach is applicable to virtually any planning problem provided that a path tracking controller and a notion of distance to obstacles in the configuration space are available. Numerical results illustrate the correctness (in terms of feasibility), efficiency (in terms of path cost), and computational speed of MCMP
    corecore