3,506 research outputs found

    Projected gradient descent for non-convex sparse spike estimation

    Full text link
    We propose a new algorithm for sparse spike estimation from Fourier measurements. Based on theoretical results on non-convex optimization techniques for off-the-grid sparse spike estimation, we present a projected gradient descent algorithm coupled with a spectral initialization procedure. Our algorithm permits to estimate the positions of large numbers of Diracs in 2d from random Fourier measurements. We present, along with the algorithm, theoretical qualitative insights explaining the success of our algorithm. This opens a new direction for practical off-the-grid spike estimation with theoretical guarantees in imaging applications

    A Nonconvex Projection Method for Robust PCA

    Full text link
    Robust principal component analysis (RPCA) is a well-studied problem with the goal of decomposing a matrix into the sum of low-rank and sparse components. In this paper, we propose a nonconvex feasibility reformulation of RPCA problem and apply an alternating projection method to solve it. To the best of our knowledge, we are the first to propose a method that solves RPCA problem without considering any objective function, convex relaxation, or surrogate convex constraints. We demonstrate through extensive numerical experiments on a variety of applications, including shadow removal, background estimation, face detection, and galaxy evolution, that our approach matches and often significantly outperforms current state-of-the-art in various ways.Comment: In the proceedings of Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19

    An Infeasible-Point Subgradient Method Using Adaptive Approximate Projections

    Full text link
    We propose a new subgradient method for the minimization of nonsmooth convex functions over a convex set. To speed up computations we use adaptive approximate projections only requiring to move within a certain distance of the exact projections (which decreases in the course of the algorithm). In particular, the iterates in our method can be infeasible throughout the whole procedure. Nevertheless, we provide conditions which ensure convergence to an optimal feasible point under suitable assumptions. One convergence result deals with step size sequences that are fixed a priori. Two other results handle dynamic Polyak-type step sizes depending on a lower or upper estimate of the optimal objective function value, respectively. Additionally, we briefly sketch two applications: Optimization with convex chance constraints, and finding the minimum l1-norm solution to an underdetermined linear system, an important problem in Compressed Sensing.Comment: 36 pages, 3 figure
    • …
    corecore