15,256 research outputs found

    Convex Cycle Bases

    Get PDF
    Convex cycles play a role e.g. in the context of product graphs. We introduce convex cycle bases and describe a polynomial-time algorithm that recognizes whether a given graph has a convex cycle basis and provides an explicit construction in the positive case. Relations between convex cycles bases and other types of cycles bases are discussed. In particular we show that if G has a unique minimal cycle bases, this basis is convex. Furthermore, we characterize a class of graphs with convex cycles bases that includes partial cubes and hence median graphs. (authors' abstract)Series: Research Report Series / Department of Statistics and Mathematic

    Recognizing Graph Theoretic Properties with Polynomial Ideals

    Get PDF
    Many hard combinatorial problems can be modeled by a system of polynomial equations. N. Alon coined the term polynomial method to describe the use of nonlinear polynomials when solving combinatorial problems. We continue the exploration of the polynomial method and show how the algorithmic theory of polynomial ideals can be used to detect k-colorability, unique Hamiltonicity, and automorphism rigidity of graphs. Our techniques are diverse and involve Nullstellensatz certificates, linear algebra over finite fields, Groebner bases, toric algebra, convex programming, and real algebraic geometry.Comment: 20 pages, 3 figure

    PURIFY: a new approach to radio-interferometric imaging

    Get PDF
    In a recent article series, the authors have promoted convex optimization algorithms for radio-interferometric imaging in the framework of compressed sensing, which leverages sparsity regularization priors for the associated inverse problem and defines a minimization problem for image reconstruction. This approach was shown, in theory and through simulations in a simple discrete visibility setting, to have the potential to outperform significantly CLEAN and its evolutions. In this work, we leverage the versatility of convex optimization in solving minimization problems to both handle realistic continuous visibilities and offer a highly parallelizable structure paving the way to significant acceleration of the reconstruction and high-dimensional data scalability. The new algorithmic structure promoted relies on the simultaneous-direction method of multipliers (SDMM), and contrasts with the current major-minor cycle structure of CLEAN and its evolutions, which in particular cannot handle the state-of-the-art minimization problems under consideration where neither the regularization term nor the data term are differentiable functions. We release a beta version of an SDMM-based imaging software written in C and dubbed PURIFY (http://basp-group.github.io/purify/) that handles various sparsity priors, including our recent average sparsity approach SARA. We evaluate the performance of different priors through simulations in the continuous visibility setting, confirming the superiority of SARA
    • …
    corecore