29,904 research outputs found

    A Framework for Worst-Case and Stochastic Safety Verification Using Barrier Certificates

    Get PDF
    This paper presents a methodology for safety verification of continuous and hybrid systems in the worst-case and stochastic settings. In the worst-case setting, a function of state termed barrier certificate is used to certify that all trajectories of the system starting from a given initial set do not enter an unsafe region. No explicit computation of reachable sets is required in the construction of barrier certificates, which makes it possible to handle nonlinearity, uncertainty, and constraints directly within this framework. In the stochastic setting, our method computes an upper bound on the probability that a trajectory of the system reaches the unsafe set, a bound whose validity is proven by the existence of a barrier certificate. For polynomial systems, barrier certificates can be constructed using convex optimization, and hence the method is computationally tractable. Some examples are provided to illustrate the use of the method

    Spectral Theorem for Convex Monotone Homogeneous Maps, and Ergodic Control

    Get PDF
    We consider convex maps f:R^n -> R^n that are monotone (i.e., that preserve the product ordering of R^n), and nonexpansive for the sup-norm. This includes convex monotone maps that are additively homogeneous (i.e., that commute with the addition of constants). We show that the fixed point set of f, when it is non-empty, is isomorphic to a convex inf-subsemilattice of R^n, whose dimension is at most equal to the number of strongly connected components of a critical graph defined from the tangent affine maps of f. This yields in particular an uniqueness result for the bias vector of ergodic control problems. This generalizes results obtained previously by Lanery, Romanovsky, and Schweitzer and Federgruen, for ergodic control problems with finite state and action spaces, which correspond to the special case of piecewise affine maps f. We also show that the length of periodic orbits of f is bounded by the cyclicity of its critical graph, which implies that the possible orbit lengths of f are exactly the orders of elements of the symmetric group on n letters.Comment: 38 pages, 13 Postscript figure

    Algorithmic Verification of Continuous and Hybrid Systems

    Get PDF
    We provide a tutorial introduction to reachability computation, a class of computational techniques that exports verification technology toward continuous and hybrid systems. For open under-determined systems, this technique can sometimes replace an infinite number of simulations.Comment: In Proceedings INFINITY 2013, arXiv:1402.661

    Attenuation of Persistent L∞-Bounded Disturbances for Nonlinear Systems

    Get PDF
    A version of nonlinear generalization of the L1-control problem, which deals with the attenuation of persistent bounded disturbances in L∞-sense, is investigated in this paper. The methods used in this paper are motivated by [23]. The main idea in the L1-performance analysis and synthesis is to construct a certain invariant subset of the state-space such that achieving disturbance rejection is equivalent to restricting the state-dynamics to this set. The concepts from viability theory, nonsmooth analysis, and set-valued analysis play important roles. In addition, the relation between the L1-control of a continuous-time system and the l1-control of its Euler approximated discrete-time systems is established

    H∞ control of nonlinear systems: a convex characterization

    Get PDF
    The nonlinear H∞-control problem is considered with an emphasis on developing machinery with promising computational properties. The solutions to H∞-control problems for a class of nonlinear systems are characterized in terms of nonlinear matrix inequalities which result in convex problems. The computational implications for the characterization are discussed

    Region of Attraction Estimation Using Invariant Sets and Rational Lyapunov Functions

    Full text link
    This work addresses the problem of estimating the region of attraction (RA) of equilibrium points of nonlinear dynamical systems. The estimates we provide are given by positively invariant sets which are not necessarily defined by level sets of a Lyapunov function. Moreover, we present conditions for the existence of Lyapunov functions linked to the positively invariant set formulation we propose. Connections to fundamental results on estimates of the RA are presented and support the search of Lyapunov functions of a rational nature. We then restrict our attention to systems governed by polynomial vector fields and provide an algorithm that is guaranteed to enlarge the estimate of the RA at each iteration

    Switching control for incremental stabilization of nonlinear systems via contraction theory

    Full text link
    In this paper we present a switching control strategy to incrementally stabilize a class of nonlinear dynamical systems. Exploiting recent results on contraction analysis of switched Filippov systems derived using regularization, sufficient conditions are presented to prove incremental stability of the closed-loop system. Furthermore, based on these sufficient conditions, a design procedure is proposed to design a switched control action that is active only where the open-loop system is not sufficiently incrementally stable in order to reduce the required control effort. The design procedure to either locally or globally incrementally stabilize a dynamical system is then illustrated by means of a representative example.Comment: Accepted to ECC 201
    corecore