1,234 research outputs found

    Topological transversals to a family of convex sets

    Full text link
    Let F\mathcal F be a family of compact convex sets in Rd\mathbb R^d. We say that F\mathcal F has a \emph{topological ρ\rho-transversal of index (m,k)(m,k)} (ρ<m\rho<m, 0<kdm0<k\leq d-m) if there are, homologically, as many transversal mm-planes to F\mathcal F as mm-planes containing a fixed ρ\rho-plane in Rm+k\mathbb R^{m+k}. Clearly, if F\mathcal F has a ρ\rho-transversal plane, then F\mathcal F has a topological ρ\rho-transversal of index (m,k),(m,k), for ρ<m\rho<m and kdmk\leq d-m. The converse is not true in general. We prove that for a family F\mathcal F of ρ+k+1\rho+k+1 compact convex sets in Rd\mathbb R^d a topological ρ\rho-transversal of index (m,k)(m,k) implies an ordinary ρ\rho-transversal. We use this result, together with the multiplication formulas for Schubert cocycles, the Lusternik-Schnirelmann category of the Grassmannian, and different versions of the colorful Helly theorem by B\'ar\'any and Lov\'asz, to obtain some geometric consequences

    Line transversals to disjoint balls

    Get PDF
    We prove that the set of directions of lines intersecting three disjoint balls in R3R^3 in a given order is a strictly convex subset of S2S^2. We then generalize this result to nn disjoint balls in RdR^d. As a consequence, we can improve upon several old and new results on line transversals to disjoint balls in arbitrary dimension, such as bounds on the number of connected components and Helly-type theorems.Comment: 21 pages, includes figure

    Codimension two and three Kneser Transversals

    Full text link
    Let k,d,λ1k,d,\lambda \geqslant 1 be integers with dλd\geqslant \lambda and let XX be a finite set of points in Rd\mathbb{R}^{d}. A (dλ)(d-\lambda)-plane LL transversal to the convex hulls of all kk-sets of XX is called Kneser transversal. If in addition LL contains (dλ)+1(d-\lambda)+1 points of XX, then LL is called complete Kneser transversal.In this paper, we present various results on the existence of (complete) Kneser transversals for λ=2,3\lambda =2,3. In order to do this, we introduce the notions of stability and instability for (complete) Kneser transversals. We first give a stability result for collections of d+2(kλ)d+2(k-\lambda) points in Rd\mathbb{R}^d with kλ2k-\lambda\geqslant 2 and λ=2,3\lambda =2,3. We then present a description of Kneser transversals LL of collections of d+2(kλ)d+2(k-\lambda) points in Rd\mathbb{R}^d with kλ2k-\lambda\geqslant 2 for λ=2,3\lambda =2,3. We show that either LL is a complete Kneser transversal or it contains d2(λ1)d-2(\lambda-1) points and the remaining 2(k1)2(k-1) points of XX are matched in k1k-1 pairs in such a way that LL intersects the corresponding closed segments determined by them. The latter leads to new upper and lower bounds (in the case when λ=2\lambda =2 and 33) for m(k,d,λ)m(k,d,\lambda) defined as the maximum positive integer nn such that every set of nn points (not necessarily in general position) in Rd\mathbb{R}^{d} admit a Kneser transversal.Finally, by using oriented matroid machinery, we present some computational results (closely related to the stability and unstability notions). We determine the existence of (complete) Kneser transversals for each of the 246246 different order types of configurations of 77 points in R3\mathbb{R}^3

    Lines pinning lines

    Full text link
    A line g is a transversal to a family F of convex polytopes in 3-dimensional space if it intersects every member of F. If, in addition, g is an isolated point of the space of line transversals to F, we say that F is a pinning of g. We show that any minimal pinning of a line by convex polytopes such that no face of a polytope is coplanar with the line has size at most eight. If, in addition, the polytopes are disjoint, then it has size at most six. We completely characterize configurations of disjoint polytopes that form minimal pinnings of a line.Comment: 27 pages, 10 figure

    Geometric Permutations of Non-Overlapping Unit Balls Revisited

    Full text link
    Given four congruent balls A,B,C,DA, B, C, D in RdR^{d} that have disjoint interior and admit a line that intersects them in the order ABCDABCD, we show that the distance between the centers of consecutive balls is smaller than the distance between the centers of AA and DD. This allows us to give a new short proof that nn interior-disjoint congruent balls admit at most three geometric permutations, two if n7n\ge 7. We also make a conjecture that would imply that n4n\geq 4 such balls admit at most two geometric permutations, and show that if the conjecture is false, then there is a counter-example of a highly degenerate nature
    corecore