23 research outputs found

    Statistical Query Algorithms for Mean Vector Estimation and Stochastic Convex Optimization

    Get PDF
    Stochastic convex optimization, by which the objective is the expectation of a random convex function, is an important and widely used method with numerous applications in machine learning, statistics, operations research, and other areas. We study the complexity of stochastic convex optimization given only statistical query (SQ) access to the objective function. We show that well-known and popular first-order iterative methods can be implemented using only statistical queries. For many cases of interest, we derive nearly matching upper and lower bounds on the estimation (sample) complexity, including linear optimization in the most general setting. We then present several consequences for machine learning, differential privacy, and proving concrete lower bounds on the power of convex optimization–based methods. The key ingredient of our work is SQ algorithms and lower bounds for estimating the mean vector of a distribution over vectors supported on a convex body in Rd. This natural problem has not been previously studied, and we show that our solutions can be used to get substantially improved SQ versions of Perceptron and other online algorithms for learning halfspaces

    Quantum algorithms for machine learning and optimization

    Get PDF
    The theories of optimization and machine learning answer foundational questions in computer science and lead to new algorithms for practical applications. While these topics have been extensively studied in the context of classical computing, their quantum counterparts are far from well-understood. In this thesis, we explore algorithms that bridge the gap between the fields of quantum computing and machine learning. First, we consider general optimization problems with only function evaluations. For two core problems, namely general convex optimization and volume estimation of convex bodies, we give quantum algorithms as well as quantum lower bounds that constitute the quantum speedups of both problems to be polynomial compared to their classical counterparts. We then consider machine learning and optimization problems with input data stored explicitly as matrices. We first look at semidefinite programs and provide quantum algorithms with polynomial speedup compared to the classical state-of-the-art. We then move to machine learning and give the optimal quantum algorithms for linear and kernel-based classifications. To complement with our quantum algorithms, we also introduce a framework for quantum-inspired classical algorithms, showing that for low-rank matrix arithmetics there can only be polynomial quantum speedup. Finally, we study statistical problems on quantum computers, with the focus on testing properties of probability distributions. We show that for testing various properties including L1-distance, L2-distance, Shannon and Renyi entropies, etc., there are polynomial quantum speedups compared to their classical counterparts. We also extend these results to testing properties of quantum states

    Non-reversible Parallel Tempering for Deep Posterior Approximation

    Full text link
    Parallel tempering (PT), also known as replica exchange, is the go-to workhorse for simulations of multi-modal distributions. The key to the success of PT is to adopt efficient swap schemes. The popular deterministic even-odd (DEO) scheme exploits the non-reversibility property and has successfully reduced the communication cost from O(P2)O(P^2) to O(P)O(P) given sufficiently many PP chains. However, such an innovation largely disappears in big data due to the limited chains and few bias-corrected swaps. To handle this issue, we generalize the DEO scheme to promote non-reversibility and propose a few solutions to tackle the underlying bias caused by the geometric stopping time. Notably, in big data scenarios, we obtain an appealing communication cost O(PlogP)O(P\log P) based on the optimal window size. In addition, we also adopt stochastic gradient descent (SGD) with large and constant learning rates as exploration kernels. Such a user-friendly nature enables us to conduct approximation tasks for complex posteriors without much tuning costs.Comment: Accepted by AAAI 202

    International Conference on Continuous Optimization (ICCOPT) 2019 Conference Book

    Get PDF
    The Sixth International Conference on Continuous Optimization took place on the campus of the Technical University of Berlin, August 3-8, 2019. The ICCOPT is a flagship conference of the Mathematical Optimization Society (MOS), organized every three years. ICCOPT 2019 was hosted by the Weierstrass Institute for Applied Analysis and Stochastics (WIAS) Berlin. It included a Summer School and a Conference with a series of plenary and semi-plenary talks, organized and contributed sessions, and poster sessions. This book comprises the full conference program. It contains, in particular, the scientific program in survey style as well as with all details, and information on the social program, the venue, special meetings, and more
    corecore