1,096 research outputs found

    Robust and Efficient Inference of Scene and Object Motion in Multi-Camera Systems

    Get PDF
    Multi-camera systems have the ability to overcome some of the fundamental limitations of single camera based systems. Having multiple view points of a scene goes a long way in limiting the influence of field of view, occlusion, blur and poor resolution of an individual camera. This dissertation addresses robust and efficient inference of object motion and scene in multi-camera and multi-sensor systems. The first part of the dissertation discusses the role of constraints introduced by projective imaging towards robust inference of multi-camera/sensor based object motion. We discuss the role of the homography and epipolar constraints for fusing object motion perceived by individual cameras. For planar scenes, the homography constraints provide a natural mechanism for data association. For scenes that are not planar, the epipolar constraint provides a weaker multi-view relationship. We use the epipolar constraint for tracking in multi-camera and multi-sensor networks. In particular, we show that the epipolar constraint reduces the dimensionality of the state space of the problem by introducing a ``shared'' state space for the joint tracking problem. This allows for robust tracking even when one of the sensors fail due to poor SNR or occlusion. The second part of the dissertation deals with challenges in the computational aspects of tracking algorithms that are common to such systems. Much of the inference in the multi-camera and multi-sensor networks deal with complex non-linear models corrupted with non-Gaussian noise. Particle filters provide approximate Bayesian inference in such settings. We analyze the computational drawbacks of traditional particle filtering algorithms, and present a method for implementing the particle filter using the Independent Metropolis Hastings sampler, that is highly amenable to pipelined implementations and parallelization. We analyze the implementations of the proposed algorithm, and in particular concentrate on implementations that have minimum processing times. The last part of the dissertation deals with the efficient sensing paradigm of compressing sensing (CS) applied to signals in imaging, such as natural images and reflectance fields. We propose a hybrid signal model on the assumption that most real-world signals exhibit subspace compressibility as well as sparse representations. We show that several real-world visual signals such as images, reflectance fields, videos etc., are better approximated by this hybrid of two models. We derive optimal hybrid linear projections of the signal and show that theoretical guarantees and algorithms designed for CS can be easily extended to hybrid subspace-compressive sensing. Such methods reduce the amount of information sensed by a camera, and help in reducing the so called data deluge problem in large multi-camera systems

    Model-driven and Data-driven Approaches for some Object Recognition Problems

    Get PDF
    Recognizing objects from images and videos has been a long standing problem in computer vision. The recent surge in the prevalence of visual cameras has given rise to two main challenges where, (i) it is important to understand different sources of object variations in more unconstrained scenarios, and (ii) rather than describing an object in isolation, efficient learning methods for modeling object-scene `contextual' relations are required to resolve visual ambiguities. This dissertation addresses some aspects of these challenges, and consists of two parts. First part of the work focuses on obtaining object descriptors that are largely preserved across certain sources of variations, by utilizing models for image formation and local image features. Given a single instance of an object, we investigate the following three problems. (i) Representing a 2D projection of a 3D non-planar shape invariant to articulations, when there are no self-occlusions. We propose an articulation invariant distance that is preserved across piece-wise affine transformations of a non-rigid object `parts', under a weak perspective imaging model, and then obtain a shape context-like descriptor to perform recognition; (ii) Understanding the space of `arbitrary' blurred images of an object, by representing an unknown blur kernel of a known maximum size using a complete set of orthonormal basis functions spanning that space, and showing that subspaces resulting from convolving a clean object and its blurred versions with these basis functions are equal under some assumptions. We then view the invariant subspaces as points on a Grassmann manifold, and use statistical tools that account for the underlying non-Euclidean nature of the space of these invariants to perform recognition across blur; (iii) Analyzing the robustness of local feature descriptors to different illumination conditions. We perform an empirical study of these descriptors for the problem of face recognition under lighting change, and show that the direction of image gradient largely preserves object properties across varying lighting conditions. The second part of the dissertation utilizes information conveyed by large quantity of data to learn contextual information shared by an object (or an entity) with its surroundings. (i) We first consider a supervised two-class problem of detecting lane markings from road video sequences, where we learn relevant feature-level contextual information through a machine learning algorithm based on boosting. We then focus on unsupervised object classification scenarios where, (ii) we perform clustering using maximum margin principles, by deriving some basic properties on the affinity of `a pair of points' belonging to the same cluster using the information conveyed by `all' points in the system, and (iii) then consider correspondence-free adaptation of statistical classifiers across domain shifting transformations, by generating meaningful `intermediate domains' that incrementally convey potential information about the domain change

    Proceedings of the second "international Traveling Workshop on Interactions between Sparse models and Technology" (iTWIST'14)

    Get PDF
    The implicit objective of the biennial "international - Traveling Workshop on Interactions between Sparse models and Technology" (iTWIST) is to foster collaboration between international scientific teams by disseminating ideas through both specific oral/poster presentations and free discussions. For its second edition, the iTWIST workshop took place in the medieval and picturesque town of Namur in Belgium, from Wednesday August 27th till Friday August 29th, 2014. The workshop was conveniently located in "The Arsenal" building within walking distance of both hotels and town center. iTWIST'14 has gathered about 70 international participants and has featured 9 invited talks, 10 oral presentations, and 14 posters on the following themes, all related to the theory, application and generalization of the "sparsity paradigm": Sparsity-driven data sensing and processing; Union of low dimensional subspaces; Beyond linear and convex inverse problem; Matrix/manifold/graph sensing/processing; Blind inverse problems and dictionary learning; Sparsity and computational neuroscience; Information theory, geometry and randomness; Complexity/accuracy tradeoffs in numerical methods; Sparsity? What's next?; Sparse machine learning and inference.Comment: 69 pages, 24 extended abstracts, iTWIST'14 website: http://sites.google.com/site/itwist1
    • …
    corecore