7,038 research outputs found

    An affine combination of two LMS adaptive filters - Transient mean-square analysis

    Get PDF
    This paper studies the statistical behavior of an affine combination of the outputs of two LMS adaptive filters that simultaneously adapt using the same white Gaussian inputs. The purpose of the combination is to obtain an LMS adaptive filter with fast convergence and small steady-state mean-square deviation (MSD). The linear combination studied is a generalization of the convex combination, in which the combination factor λ(n)\lambda(n) is restricted to the interval (0,1)(0,1). The viewpoint is taken that each of the two filters produces dependent estimates of the unknown channel. Thus, there exists a sequence of optimal affine combining coefficients which minimizes the MSE. First, the optimal unrealizable affine combiner is studied and provides the best possible performance for this class. Then two new schemes are proposed for practical applications. The mean-square performances are analyzed and validated by Monte Carlo simulations. With proper design, the two practical schemes yield an overall MSD that is usually less than the MSD's of either filter

    Plant identification via adaptive combination of transversal filters

    Get PDF
    For least mean-square (LMS) algorithm applications, it is important to improve the speed of convergence vs the residual error trade-off imposed by the selection of a certain value for the step size. In this paper, we propose to use a mixture approach, adaptively combining two independent LMS filters with large and small step sizes to obtain fast convergence with low misadjustment during stationary periods. Some plant identification simulation examples show the effectiveness of our method when compared to previous variable step size approaches. This combination approach can be straightforwardly extended to other kinds of filters, as it is illustrated with a convex combination of recursive least-squares (RLS) filters.Publicad

    Adaptive Algorithms for Intelligent Acoustic Interfaces

    Get PDF
    Modern speech communications are evolving towards a new direction which involves users in a more perceptive way. That is the immersive experience, which may be considered as the “last-mile” problem of telecommunications. One of the main feature of immersive communications is the distant-talking, i.e. the hands-free (in the broad sense) speech communications without bodyworn or tethered microphones that takes place in a multisource environment where interfering signals may degrade the communication quality and the intelligibility of the desired speech source. In order to preserve speech quality intelligent acoustic interfaces may be used. An intelligent acoustic interface may comprise multiple microphones and loudspeakers and its peculiarity is to model the acoustic channel in order to adapt to user requirements and to environment conditions. This is the reason why intelligent acoustic interfaces are based on adaptive filtering algorithms. The acoustic path modelling entails a set of problems which have to be taken into account in designing an adaptive filtering algorithm. Such problems may be basically generated by a linear or a nonlinear process and can be tackled respectively by linear or nonlinear adaptive algorithms. In this work we consider such modelling problems and we propose novel effective adaptive algorithms that allow acoustic interfaces to be robust against any interfering signals, thus preserving the perceived quality of desired speech signals. As regards linear adaptive algorithms, a class of adaptive filters based on the sparse nature of the acoustic impulse response has been recently proposed. We adopt such class of adaptive filters, named proportionate adaptive filters, and derive a general framework from which it is possible to derive any linear adaptive algorithm. Using such framework we also propose some efficient proportionate adaptive algorithms, expressly designed to tackle problems of a linear nature. On the other side, in order to address problems deriving from a nonlinear process, we propose a novel filtering model which performs a nonlinear transformations by means of functional links. Using such nonlinear model, we propose functional link adaptive filters which provide an efficient solution to the modelling of a nonlinear acoustic channel. Finally, we introduce robust filtering architectures based on adaptive combinations of filters that allow acoustic interfaces to more effectively adapt to environment conditions, thus providing a powerful mean to immersive speech communications

    Adaptive Algorithms for Intelligent Acoustic Interfaces

    Get PDF
    Modern speech communications are evolving towards a new direction which involves users in a more perceptive way. That is the immersive experience, which may be considered as the “last-mile” problem of telecommunications. One of the main feature of immersive communications is the distant-talking, i.e. the hands-free (in the broad sense) speech communications without bodyworn or tethered microphones that takes place in a multisource environment where interfering signals may degrade the communication quality and the intelligibility of the desired speech source. In order to preserve speech quality intelligent acoustic interfaces may be used. An intelligent acoustic interface may comprise multiple microphones and loudspeakers and its peculiarity is to model the acoustic channel in order to adapt to user requirements and to environment conditions. This is the reason why intelligent acoustic interfaces are based on adaptive filtering algorithms. The acoustic path modelling entails a set of problems which have to be taken into account in designing an adaptive filtering algorithm. Such problems may be basically generated by a linear or a nonlinear process and can be tackled respectively by linear or nonlinear adaptive algorithms. In this work we consider such modelling problems and we propose novel effective adaptive algorithms that allow acoustic interfaces to be robust against any interfering signals, thus preserving the perceived quality of desired speech signals. As regards linear adaptive algorithms, a class of adaptive filters based on the sparse nature of the acoustic impulse response has been recently proposed. We adopt such class of adaptive filters, named proportionate adaptive filters, and derive a general framework from which it is possible to derive any linear adaptive algorithm. Using such framework we also propose some efficient proportionate adaptive algorithms, expressly designed to tackle problems of a linear nature. On the other side, in order to address problems deriving from a nonlinear process, we propose a novel filtering model which performs a nonlinear transformations by means of functional links. Using such nonlinear model, we propose functional link adaptive filters which provide an efficient solution to the modelling of a nonlinear acoustic channel. Finally, we introduce robust filtering architectures based on adaptive combinations of filters that allow acoustic interfaces to more effectively adapt to environment conditions, thus providing a powerful mean to immersive speech communications

    Steady-State Performance of an Adaptive Combined MISO Filter Using the Multichannel Affine Projection Algorithm

    Get PDF
    The combination of adaptive filters is an effective approach to improve filtering performance. In this paper, we investigate the performance of an adaptive combined scheme between two adaptive multiple-input single-output (MISO) filters, which can be easily extended to the case of multiple outputs. In order to generalize the analysis, we consider the multichannel affine projection algorithm (APA) to update the coefficients of the MISO filters, which increases the possibility of exploiting the capabilities of the filtering scheme. Using energy conservation relations, we derive a theoretical behavior of the proposed adaptive combination scheme at steady state. Such analysis entails some further theoretical insights with respect to the single channel combination scheme. Simulation results prove both the validity of the theoretical steady-state analysis and the effectiveness of the proposed combined scheme.The work of Danilo Comminiello, Michele Scarpiniti and Aurelio Uncini has been supported by the project: “Vehicular Fog energy-efficient QoS mining and dissemination of multimedia Big Data streams (V-FoG and V-Fog2)”, funded by Sapienza University of Rome Bando 2016 and 2017. The work of Michele Scarpiniti and Aurelio Uncini has been also supported by the project: “GAUChO – A Green Adaptive Fog Computing and networking Architectures” funded by the MIUR Progetti di Ricerca di Rilevante Interesse Nazionale (PRIN) Bando 2015, grant 2015YPXH4W_004. The work of Luis A. Azpicueta-Ruiz is partially supported by the Spanish Ministry of Economy and Competitiveness (under grant DAMA (TIN2015-70308-REDT) and grants TEC2014-52289-R and TEC2017-83838-R), and by the European Union

    Sparse Distributed Learning Based on Diffusion Adaptation

    Full text link
    This article proposes diffusion LMS strategies for distributed estimation over adaptive networks that are able to exploit sparsity in the underlying system model. The approach relies on convex regularization, common in compressive sensing, to enhance the detection of sparsity via a diffusive process over the network. The resulting algorithms endow networks with learning abilities and allow them to learn the sparse structure from the incoming data in real-time, and also to track variations in the sparsity of the model. We provide convergence and mean-square performance analysis of the proposed method and show under what conditions it outperforms the unregularized diffusion version. We also show how to adaptively select the regularization parameter. Simulation results illustrate the advantage of the proposed filters for sparse data recovery.Comment: to appear in IEEE Trans. on Signal Processing, 201

    Adaptive Graph Signal Processing: Algorithms and Optimal Sampling Strategies

    Full text link
    The goal of this paper is to propose novel strategies for adaptive learning of signals defined over graphs, which are observed over a (randomly time-varying) subset of vertices. We recast two classical adaptive algorithms in the graph signal processing framework, namely, the least mean squares (LMS) and the recursive least squares (RLS) adaptive estimation strategies. For both methods, a detailed mean-square analysis illustrates the effect of random sampling on the adaptive reconstruction capability and the steady-state performance. Then, several probabilistic sampling strategies are proposed to design the sampling probability at each node in the graph, with the aim of optimizing the tradeoff between steady-state performance, graph sampling rate, and convergence rate of the adaptive algorithms. Finally, a distributed RLS strategy is derived and is shown to be convergent to its centralized counterpart. Numerical simulations carried out over both synthetic and real data illustrate the good performance of the proposed sampling and reconstruction strategies for (possibly distributed) adaptive learning of signals defined over graphs.Comment: Submitted to IEEE Transactions on Signal Processing, September 201

    Collaborative adaptive filtering for machine learning

    No full text
    Quantitative performance criteria for the analysis of machine learning architectures and algorithms have long been established. However, qualitative performance criteria, which identify fundamental signal properties and ensure any processing preserves the desired properties, are still emerging. In many cases, whilst offline statistical tests exist such as assessment of nonlinearity or stochasticity, online tests which not only characterise but also track changes in the nature of the signal are lacking. To that end, by employing recent developments in signal characterisation, criteria are derived for the assessment of the changes in the nature of the processed signal. Through the fusion of the outputs of adaptive filters a single collaborative hybrid filter is produced. By tracking the dynamics of the mixing parameter of this filter, rather than the actual filter performance, a clear indication as to the current nature of the signal is given. Implementations of the proposed method show that it is possible to quantify the degree of nonlinearity within both real- and complex-valued data. This is then extended (in the real domain) from dealing with nonlinearity in general, to a more specific example, namely sparsity. Extensions of adaptive filters from the real to the complex domain are non-trivial and the differences between the statistics in the real and complex domains need to be taken into account. In terms of signal characteristics, nonlinearity can be both split- and fully-complex and complex-valued data can be considered circular or noncircular. Furthermore, by combining the information obtained from hybrid filters of different natures it is possible to use this method to gain a more complete understanding of the nature of the nonlinearity within a signal. This also paves the way for building multidimensional feature spaces and their application in data/information fusion. To produce online tests for sparsity, adaptive filters for sparse environments are investigated and a unifying framework for the derivation of proportionate normalised least mean square (PNLMS) algorithms is presented. This is then extended to derive variants with an adaptive step-size. In order to create an online test for noncircularity, a study of widely linear autoregressive modelling is presented, from which a proof of the convergence of the test for noncircularity can be given. Applications of this method are illustrated on examples such as biomedical signals, speech and wind data

    Information Acquisition with Sensing Robots: Algorithms and Error Bounds

    Full text link
    Utilizing the capabilities of configurable sensing systems requires addressing difficult information gathering problems. Near-optimal approaches exist for sensing systems without internal states. However, when it comes to optimizing the trajectories of mobile sensors the solutions are often greedy and rarely provide performance guarantees. Notably, under linear Gaussian assumptions, the problem becomes deterministic and can be solved off-line. Approaches based on submodularity have been applied by ignoring the sensor dynamics and greedily selecting informative locations in the environment. This paper presents a non-greedy algorithm with suboptimality guarantees, which does not rely on submodularity and takes the sensor dynamics into account. Our method performs provably better than the widely used greedy one. Coupled with linearization and model predictive control, it can be used to generate adaptive policies for mobile sensors with non-linear sensing models. Applications in gas concentration mapping and target tracking are presented.Comment: 9 pages (two-column); 2 figures; Manuscript submitted to the 2014 IEEE International Conference on Robotics and Automatio
    corecore