2,482 research outputs found

    A one decade survey of autonomous mobile robot systems

    Get PDF
    Recently, autonomous mobile robots have gained popularity in the modern world due to their relevance technology and application in real world situations. The global market for mobile robots will grow significantly over the next 20 years. Autonomous mobile robots are found in many fields including institutions, industry, business, hospitals, agriculture as well as private households for the purpose of improving day-to-day activities and services. The development of technology has increased in the requirements for mobile robots because of the services and tasks provided by them, like rescue and research operations, surveillance, carry heavy objects and so on. Researchers have conducted many works on the importance of robots, their uses, and problems. This article aims to analyze the control system of mobile robots and the way robots have the ability of moving in real-world to achieve their goals. It should be noted that there are several technological directions in a mobile robot industry. It must be observed and integrated so that the robot functions properly: Navigation systems, localization systems, detection systems (sensors) along with motion and kinematics and dynamics systems. All such systems should be united through a control unit; thus, the mission or work of mobile robots are conducted with reliability

    Challenges and solutions for autonomous ground robot scene understanding and navigation in unstructured outdoor environments: A review

    Get PDF
    The capabilities of autonomous mobile robotic systems have been steadily improving due to recent advancements in computer science, engineering, and related disciplines such as cognitive science. In controlled environments, robots have achieved relatively high levels of autonomy. In more unstructured environments, however, the development of fully autonomous mobile robots remains challenging due to the complexity of understanding these environments. Many autonomous mobile robots use classical, learning-based or hybrid approaches for navigation. More recent learning-based methods may replace the complete navigation pipeline or selected stages of the classical approach. For effective deployment, autonomous robots must understand their external environments at a sophisticated level according to their intended applications. Therefore, in addition to robot perception, scene analysis and higher-level scene understanding (e.g., traversable/non-traversable, rough or smooth terrain, etc.) are required for autonomous robot navigation in unstructured outdoor environments. This paper provides a comprehensive review and critical analysis of these methods in the context of their applications to the problems of robot perception and scene understanding in unstructured environments and the related problems of localisation, environment mapping and path planning. State-of-the-art sensor fusion methods and multimodal scene understanding approaches are also discussed and evaluated within this context. The paper concludes with an in-depth discussion regarding the current state of the autonomous ground robot navigation challenge in unstructured outdoor environments and the most promising future research directions to overcome these challenges

    A 64mW DNN-based Visual Navigation Engine for Autonomous Nano-Drones

    Full text link
    Fully-autonomous miniaturized robots (e.g., drones), with artificial intelligence (AI) based visual navigation capabilities are extremely challenging drivers of Internet-of-Things edge intelligence capabilities. Visual navigation based on AI approaches, such as deep neural networks (DNNs) are becoming pervasive for standard-size drones, but are considered out of reach for nanodrones with size of a few cm2{}^\mathrm{2}. In this work, we present the first (to the best of our knowledge) demonstration of a navigation engine for autonomous nano-drones capable of closed-loop end-to-end DNN-based visual navigation. To achieve this goal we developed a complete methodology for parallel execution of complex DNNs directly on-bard of resource-constrained milliwatt-scale nodes. Our system is based on GAP8, a novel parallel ultra-low-power computing platform, and a 27 g commercial, open-source CrazyFlie 2.0 nano-quadrotor. As part of our general methodology we discuss the software mapping techniques that enable the state-of-the-art deep convolutional neural network presented in [1] to be fully executed on-board within a strict 6 fps real-time constraint with no compromise in terms of flight results, while all processing is done with only 64 mW on average. Our navigation engine is flexible and can be used to span a wide performance range: at its peak performance corner it achieves 18 fps while still consuming on average just 3.5% of the power envelope of the deployed nano-aircraft.Comment: 15 pages, 13 figures, 5 tables, 2 listings, accepted for publication in the IEEE Internet of Things Journal (IEEE IOTJ

    3D-SeqMOS: A Novel Sequential 3D Moving Object Segmentation in Autonomous Driving

    Full text link
    For the SLAM system in robotics and autonomous driving, the accuracy of front-end odometry and back-end loop-closure detection determine the whole intelligent system performance. But the LiDAR-SLAM could be disturbed by current scene moving objects, resulting in drift errors and even loop-closure failure. Thus, the ability to detect and segment moving objects is essential for high-precision positioning and building a consistent map. In this paper, we address the problem of moving object segmentation from 3D LiDAR scans to improve the odometry and loop-closure accuracy of SLAM. We propose a novel 3D Sequential Moving-Object-Segmentation (3D-SeqMOS) method that can accurately segment the scene into moving and static objects, such as moving and static cars. Different from the existing projected-image method, we process the raw 3D point cloud and build a 3D convolution neural network for MOS task. In addition, to make full use of the spatio-temporal information of point cloud, we propose a point cloud residual mechanism using the spatial features of current scan and the temporal features of previous residual scans. Besides, we build a complete SLAM framework to verify the effectiveness and accuracy of 3D-SeqMOS. Experiments on SemanticKITTI dataset show that our proposed 3D-SeqMOS method can effectively detect moving objects and improve the accuracy of LiDAR odometry and loop-closure detection. The test results show our 3D-SeqMOS outperforms the state-of-the-art method by 12.4%. We extend the proposed method to the SemanticKITTI: Moving Object Segmentation competition and achieve the 2nd in the leaderboard, showing its effectiveness

    A Study on Learning Social Robot Navigation with Multimodal Perception

    Full text link
    Autonomous mobile robots need to perceive the environments with their onboard sensors (e.g., LiDARs and RGB cameras) and then make appropriate navigation decisions. In order to navigate human-inhabited public spaces, such a navigation task becomes more than only obstacle avoidance, but also requires considering surrounding humans and their intentions to somewhat change the navigation behavior in response to the underlying social norms, i.e., being socially compliant. Machine learning methods are shown to be effective in capturing those complex and subtle social interactions in a data-driven manner, without explicitly hand-crafting simplified models or cost functions. Considering multiple available sensor modalities and the efficiency of learning methods, this paper presents a comprehensive study on learning social robot navigation with multimodal perception using a large-scale real-world dataset. The study investigates social robot navigation decision making on both the global and local planning levels and contrasts unimodal and multimodal learning against a set of classical navigation approaches in different social scenarios, while also analyzing the training and generalizability performance from the learning perspective. We also conduct a human study on how learning with multimodal perception affects the perceived social compliance. The results show that multimodal learning has a clear advantage over unimodal learning in both dataset and human studies. We open-source our code for the community's future use to study multimodal perception for learning social robot navigation
    corecore