308 research outputs found

    Energy Storage Systems for Traction and Renewable Energy Applications

    Get PDF
    Energy storage systems are the set of technologies used to store various forms of energy, and by necessity, can be discharged. Energy storage technologies have a wide range of characteristics and specifications. Like any other technology, each type of energy storage has its pros and cons. Depending on the application, it is crucial to perform a tradeoff study between the various energy storage options to choose the optimal solution based on the key performance objectives and various aspects of those technologies. The purpose of this thesis is to present a thorough literature review of the various energy storage options highlighting the key tradeoffs involved. This thesis focuses on evaluating energy storage options for traction and renewable energy applicationsHybrid Electric Vehicles (HEVs) is one key application space driving breakthroughs in energy storage technologies. The focus though has been typically on using one type of energy storage systems. This thesis investigates the impact of combining several types of batteries with ultracapacitor. A case study of integrating two energy storage systems in a series-parallel hybrid electric vehicle is simulated by using MATLAB-SIMULINK software.The other key application space is renewable energy especially wind and solar. Due to the intermittent nature of renewable energy sources, energy storage is a must to achieve the required power quality. Therefore, this thesis aims to investigate different cases of combining different types of energy storage with wind and solar. Hybrid Optimization Model for Electric Renewables (HOMER) software is utilized to study the economic and sizing aspects in each case

    Energy harvesting towards self-powered iot devices

    Get PDF
    The internet of things (IoT) manages a large infrastructure of web-enabled smart devices, small devices that use embedded systems, such as processors, sensors, and communication hardware to collect, send, and elaborate on data acquired from their environment. Thus, from a practical point of view, such devices are composed of power-efficient storage, scalable, and lightweight nodes needing power and batteries to operate. From the above reason, it appears clear that energy harvesting plays an important role in increasing the efficiency and lifetime of IoT devices. Moreover, from acquiring energy by the surrounding operational environment, energy harvesting is important to make the IoT device network more sustainable from the environmental point of view. Different state-of-the-art energy harvesters based on mechanical, aeroelastic, wind, solar, radiofrequency, and pyroelectric mechanisms are discussed in this review article. To reduce the power consumption of the batteries, a vital role is played by power management integrated circuits (PMICs), which help to enhance the system's life span. Moreover, PMICs from different manufacturers that provide power management to IoT devices have been discussed in this paper. Furthermore, the energy harvesting networks can expose themselves to prominent security issues putting the secrecy of the system to risk. These possible attacks are also discussed in this review article

    A novel power management and control design framework for resilient operation of microgrids

    Get PDF
    This thesis concerns the investigation of the integration of the microgrid, a form of future electric grids, with renewable energy sources, and electric vehicles. It presents an innovative modular tri-level hierarchical management and control design framework for the future grid as a radical departure from the ‘centralised’ paradigm in conventional systems, by capturing and exploiting the unique characteristics of a host of new actors in the energy arena - renewable energy sources, storage systems and electric vehicles. The formulation of the tri-level hierarchical management and control design framework involves a new perspective on the problem description of the power management of EVs within a microgrid, with the consideration of, among others, the bi-directional energy flow between storage and renewable sources. The chronological structure of the tri-level hierarchical management operation facilitates a modular power management and control framework from three levels: Microgrid Operator (MGO), Charging Station Operator (CSO), and Electric Vehicle Operator (EVO). At the top level is the MGO that handles long-term decisions of balancing the power flow between the Distributed Generators (DGs) and the electrical demand for a restructure realistic microgrid model. Optimal scheduling operation of the DGs and EVs is used within the MGO to minimise the total combined operating and emission costs of a hybrid microgrid including the unit commitment strategy. The results have convincingly revealed that discharging EVs could reduce the total cost of the microgrid operation. At the middle level is the CSO that manages medium-term decisions of centralising the operation of aggregated EVs connected to the bus-bar of the microgrid. An energy management concept of charging or discharging the power of EVs in different situations includes the impacts of frequency and voltage deviation on the system, which is developed upon the MGO model above. Comprehensive case studies show that the EVs can act as a regulator of the microgrid, and can control their participating role by discharging active or reactive power in mitigating frequency and/or voltage deviations. Finally, at the low level is the EVO that handles the short-term decisions of decentralising the functioning of an EV and essential power interfacing circuitry, as well as the generation of low-level switching functions. EVO level is a novel Power and Energy Management System (PEMS), which is further structured into three modular, hierarchical processes: Energy Management Shell (EMS), Power Management Shell (PMS), and Power Electronic Shell (PES). The shells operate chronologically with a different object and a different period term. Controlling the power electronics interfacing circuitry is an essential part of the integration of EVs into the microgrid within the EMS. A modified, multi-level, H-bridge cascade inverter without the use of a main (bulky) inductor is proposed to achieve good performance, high power density, and high efficiency. The proposed inverter can operate with multiple energy resources connected in series to create a synergized energy system. In addition, the integration of EVs into a simulated microgrid environment via a modified multi-level architecture with a novel method of Space Vector Modulation (SVM) by the PES is implemented and validated experimentally. The results from the SVM implementation demonstrate a viable alternative switching scheme for high-performance inverters in EV applications. The comprehensive simulation results from the MGO and CSO models, together with the experimental results at the EVO level, not only validate the distinctive functionality of each layer within a novel synergy to harness multiple energy resources, but also serve to provide compelling evidence for the potential of the proposed energy management and control framework in the design of future electric grids. The design framework provides an essential design to for grid modernisation

    Renewable medium-small projects in Spain: Past and present of microgrid development

    Get PDF
    This paper reviews the on-going research studies and microgrid pilot projects focusing on the Spanish case because of its renewable energy potential with the objective set on highlights the main investigation drifts in the field such as the used technologies, control methods and operation challenges. That way, several smart grids have been commented and compared, finding that photovoltaic and wind power are the favourites energy generation technologies. Although batteries are the most widespread energy storage systems, green hydrogen has a strong presence, showing up in a third of the Spanish smart grids. Traditional control strategies are being displaced by advanced ones such as MPC or fuzzy logic due to its higher efficiency. The reader will have a clear view of the potential of renewable energy penetration in the form of smart grids in Spain, through the study of the equipment involved in the different facilities contribution and the main control strategies implemented, in a comparative analysis of the key aspect of this emerging technology.Consejería de Conocimiento, Investigación y Universidad - Junta de Andalucía PY18-RE-002

    New advances in vehicular technology and automotive engineering

    Get PDF
    An automobile was seen as a simple accessory of luxury in the early years of the past century. Therefore, it was an expensive asset which none of the common citizen could afford. It was necessary to pass a long period and waiting for Henry Ford to establish the first plants with the series fabrication. This new industrial paradigm makes easy to the common American to acquire an automobile, either for running away or for working purposes. Since that date, the automotive research grown exponentially to the levels observed in the actuality. Now, the automobiles are indispensable goods; saying with other words, the automobile is a first necessity article in a wide number of aspects of living: for workers to allow them to move from their homes into their workplaces, for transportation of students, for allowing the domestic women in their home tasks, for ambulances to carry people with decease to the hospitals, for transportation of materials, and so on, the list don’t ends. The new goal pursued by the automotive industry is to provide electric vehicles at low cost and with high reliability. This commitment is justified by the oil’s peak extraction on 50s of this century and also by the necessity to reduce the emissions of CO2 to the atmosphere, as well as to reduce the needs of this even more valuable natural resource. In order to achieve this task and to improve the regular cars based on oil, the automotive industry is even more concerned on doing applied research on technology and on fundamental research of new materials. The most important idea to retain from the previous introduction is to clarify the minds of the potential readers for the direct and indirect penetration of the vehicles and the vehicular industry in the today’s life. In this sequence of ideas, this book tries not only to fill a gap by presenting fresh subjects related to the vehicular technology and to the automotive engineering but to provide guidelines for future research. This book account with valuable contributions from worldwide experts of automotive’s field. The amount and type of contributions were judiciously selected to cover a broad range of research. The reader can found the most recent and cutting-edge sources of information divided in four major groups: electronics (power, communications, optics, batteries, alternators and sensors), mechanics (suspension control, torque converters, deformation analysis, structural monitoring), materials (nanotechnology, nanocomposites, lubrificants, biodegradable, composites, structural monitoring) and manufacturing (supply chains). We are sure that you will enjoy this book and will profit with the technical and scientific contents. To finish, we are thankful to all of those who contributed to this book and who made it possible.info:eu-repo/semantics/publishedVersio

    Effective strategies to enhance electrochemical performance of carbon materials for non-aqueous potassium- and sodium-ion capacitors

    Get PDF
    Hybrid-Ionen-Kondensatoren werden seit Jahrzehnten als eine aufstrebende Klasse von Energiespeichersystemen betrachtet, die die Leistung kommerzieller elektrischer Doppelschichtkondensatoren mit hoher Leistung und konventioneller Sekundär-Ionen-Batterien mit ausgezeichnet energischem Output überbrücken können. In der letzten Zeit wurden Kalium- und Natrium-Ionen-Kondensatoren aufgrund der Abundanz und der Kosten-Günstigkeit des Kalium- und -Natriumressourcen als aussichtsreiche Energiespeicher für kommerzielle Anwendungen angesehen. Aber drei wesentliche Herausforderungen sollen zuerst diskutiert werden. Die limitierte Elektrodenkapazität aufgrund der Komplexität der hybriden Ionenspeicherung, die Diffusionskinematik der Ionen beschränkt durch den großen Radius der K- und Na-Ionen und die fehlende Elektrolytforschung. Um die obengenannten Herausforderungen zu bewältigen, werden drei neuartige und effektive Strategien entwickelt, sodass die drei wichtigen Komponenten bzw. die Kathode, der Elektrolyt und die Anode der Hybrid-Ionen-Kondensatoren optimiert werden können. Zuerst wird eine mit dem Sauerstoff funktionalisierter Kohlenstoff-Elektrode als höher Kapazität-Kathode der Kalium-Ionen-Kondensatoren hergestellt. Dabei wird die Rationalität der Auswahl der Kohlenstoff-Precursoren und die Sauerstofffunktionalisierungstechnik diskutiert. Demnächst wird eine systematische Korrelationsuntersuchung zwischen den Elektrolyten und der Dual-Ionenspeicherung der Sauerstoffkatode der Kalium-Ionen Kondensatoren durchgeführt. Die Interaktion zwischen Kationen und Anionen spielt eine wichtige Rolle bei der Dual-Ionen-Speicherung der Kohlenstoff-Kathode. Darüber hinaus wird gezeigt, dass der Ether-Elektrolyt bei der Kationen- und Anionen-Speicherung mit hohen Raten besser als der Ester-Elektrolyt wirkt. Drittens wird eine Kombination aus Adsorptions- und Co-Interkalationsmechanismus als neue Ionenspeicherungsmechanismus vorgeschlagen, um eine effiziente schnelle Na-Ionen-Speicherung auf der Kohlenstoff-Anode der Nalium-Ionen Kondensatoren zu realisieren. Alle drei Arbeiten werden sowohl in Halb- als auch in Vollzellen demonstriert, sodass eine verbesserte elektrochemische Leistung in Bezug auf große Kapazität, lange Lebensdauer und das High-Rate Vermögens erreichen werden kann. Die obengenannten effektiven Strategien haben ausführlich gezeigt, wie die Gestaltung der Materialsynthese, die Optimierung des Elektrolyten und die Modifizierung des Mechanismus für die leistungsstarken Hybrid-Ionen-Kondensatoren sind.Hybrid ion capacitors have attracted much attention for decades as an emerging class of energy storage system that may bridge the performance of commercial electric double-layer capacitors with high-power output and conventional secondary ion batteries with high-energy output. Recently, potassium- and sodium-ion capacitors have been considered as promising energy storage devices to realize commercial applications owing to the abundant and low-cost sodium and potassium resources. However, there are still three key challenges to promote their development. First, electrode capacity suffers from the complexity of hybrid ion storage. Second, ionic diffusion kinetics suffers from the large radius of Na and K ions. Third, the lack of electrolyte research. In order to tackle these challenges, three novel and effective strategies are developed to optimize three important components of hybrid ion capacitors: cathode, electrolyte, and anode. First, an oxygen-functionalized carbon electrode is fabricated as the high-capacity cathode for potassium-ion capacitor. The rationality of the carbon precursor selection and oxygen functionalization engineering are discussed. Second, a systematic investigation between the electrolytes and dual-ion storage is carried out. This work first reveals that the interaction of the cations and anions plays a key role in the dual-ion storage of the carbon cathode. It further demonstrates that the ether electrolyte outperforms the ester electrolytes in high-rate cation and anion storage. Third, a combination of adsorption mechanism and co-intercalation mechanism is proposed to realize fast Na-ion storage on the carbon anode. All three works are demonstrated in both half cells and full cells, they achieve improved electrochemical performance in terms of large capacity, long cycle life, and high rate capability. These effective strategies can provide valuable guidance regarding materials synthesis design, electrolyte optimization, and mechanism modification for approaching high-performance hybrid ion capacitors

    Modern Methods of Power Transmission in Systems with Electrical Energy Accumulation

    Get PDF
    Import 04/02/2014Disertační práce se zabývá výkonovými systémy v soustavách s obnovitelnými zdroji a akumulátory elektrické energie. Práce nejprve uvádí dostupné výkonové systémy s akumulátory, měniče pro obnovitelné zdroje a různé technologie pro akumulaci elektrické energie. Poté je představena navrhovaná výkonová konfigurace, jejíž součástí je paralelně-připojený střídač (PCI) a sériově-připojený střídač (SCI). Hlavním úkolem SCI je dynamicky podporovat PCI, a tím zajistit požadované napětí na zátěži. Pozornost je věnována moderním metodám vhodným pro řízení SCI. Metoda vektorového řízení a softwarový fázový závěs je zvolena a dále podrobněji diskutována. Tato řídicí strategie je následně ověřena v simulačním prostředí MATLAB/Simulink. Dva prototypy výkonových měničů jsou řízeny signálovými kontroléry TMS320F28335 a jsou provozovány v síťovém nebo v ostrovním režimu při různých zátěžích. V ostrovním režimu PCI generuje základní průběh napětí a SCI přispívá tak, aby byla zachována žádaná hodnota napětí na zátěži. Experimentální výsledky prokazují správnou funkčnost celého systému.This Ph.D. thesis deals with the power devices for grid-connected systems with renewable resources and electrical energy accumulators. The thesis first presents available power devices with energy storage systems, converters for renewable resources, and different energy storage technologies. Thereafter, the proposed power configuration is introduced together with the location of a parallel-connected inverter (PCI) and a series-connected inverter (SCI) in this system. The main task of the SCI is to dynamically support the PCI and to keep the load voltage at required level. The focus is given to an investigation of modern control methods suitable for the SCI. A vector control strategy with a software phase-locked loop is selected and analyzed. The verification of the proposed control strategy is given by simulation in MATLAB/Simulink. Two prototypes of power converters are based on TMS320F28335 digital signal controllers, and are operated in grid mode or in island mode with different loads. In island mode, the PCI generates the basic voltage waveform and the SCI increases or decreases the injected voltage according to the reference load voltage. The experimental results demonstrate the correct system functionality.Prezenční430 - Katedra elektronikyvyhově

    An adaptive power distribution scheme for hybrid energy storage system to reduce the battery energy throughput in electric vehicles

    Get PDF
    The battery/supercapacitor (SC) hybrid energy storage system (HESS) is widely applied in electric vehicles (EVs) in recent years due to the hybrid system which combines the benefits of both devices. This paper proposes an adaptive power distribution scheme for battery/SC HESS to maximise the usage of SC according to its stored energy and load current. In the approach, the low-pass filter is developed with adaptive algorithm to calculate the suitable cut-off frequency to allocate the power demand between the battery and SC. The approach can adjust the cut-off frequency but not change the structure of the control system, and thus its original property of simple implementation and stability is not affected. The comprehensive simulation study verifies the effectiveness of the proposed adaptive power distribution scheme in a battery/SC HESS and its stability is further validated using Lyapunov method. The result shows that the adaptive method performs better than a traditional control system with 20%–40% less battery energy throughput during operation and can adjust the dynamic response of the HESS according to the energy capacity of SC to further improve system efficiency. The proposed adaptive power distribution scheme is verified able to extend the service life of the HESS system in EV applications

    Analysis and modelling of energy source combinations for electric vehicles

    Get PDF
    The objective of this research is to develop suitable models to simulate and analyse Electrical Vehicle (EV) power-trains to identify and improve some of the deficiencies of EVs and investigate new system architectures. Although some electro-chemical batteries improvements have lately been achieved in specific-energy, the power density is still low. Therefore, an efficient, cost-effective and high power density support unit could facilitate EV competitiveness compared to conventional internal combustion engine powered vehicles in the near future. The Na-Ni-Cl2, or ZEBRA battery as it is most commonly known, has good energy and power densities; it is very promising electro-chemical battery candidate for EV's. The thesis presents a detail simulation model for the ZEBRA technology and investigates its application in an EV power-train with regard to state-of-charge and voltage transients. Unlike other battery systems, the ZEBRA technology can sustain about 5-10% of failed cells. While this is advantageous in single series string or single battery operation it is problematic when higher numbers of batteries are connected in parallel. The simulation model is used to investigate faulted operation of parallel battery configurations. A non-linear capacitance versus voltage function is implemented for the supercapacitor model which yields good energy and terminal voltage predictions when the supercapacitor is cycled over dynamic regimes common to EV applications. A thermal model is also included. Multiple energy source systems are modelled and studied in the form of an energy dense ZEBRA battery connected in parallel with a power dense supercapacitor system. The combination is shown to increase available power, reduce the maximum power demanded from the battery and decrease battery internal power loss. Consequently, battery life would be increased and more energy would be recovered from regenerative braking, enhancing the energy conversion efficiency of the power-train.A combination of ICE and ZEBRA battery is implemented as a range extender for London taxi driving from Manchester to London. The hybridisation ratio of the system is discussed and applied to fulfil the requirement with minimum emissions. This study offers a suitable model for different energy sources, and then optimises the vehicle energy storage combination to realize its full potential. The developed model is used to assess different energy source combinations in order to achieve an energy efficient combination that provides an improved vehicle performance, and, importantly, to understand the energy source interconnection issues in terms of energy flow and circuit transients.EThOS - Electronic Theses Online ServiceLibyan GovernmentGBUnited Kingdo

    Stratégies de gestion d’énergie pour véhicules électriques et hybride avec systèmes hybride de stockage d’énergie

    Get PDF
    Les véhicules électriques et hybrides font partie des éléments clés pour résoudre les problèmes de réchauffement de la planète et d'épuisement des ressources en combustibles fossiles dans le domaine du transporte. En raison des limites des différents systèmes de stockage et de conversion d’énergie en termes de puissance et d'énergie, les hybridations sont intéressantes pour les véhicules électriques (VE). Dans cette thèse, deux hybridations typiques sont étudiées • un sous-système de stockage d'énergie hybride combinant des batteries et des supercondensateurs (SC) ; • et un sous-système de traction hybride parallèle combinant moteur à combustion interne et entraînement électrique. Ces sources d'énergie et ces conversions combinées doivent être gérées dans le cadre de stratégies de gestion de l'énergie (SGE). Parmi celles-ci, les méthodes basées sur l'optimisation présentent un intérêt en raison de leur approche systématique et de leurs performances élevées. Néanmoins, ces méthodes sont souvent compliquées et demandent beaucoup de temps de calcul, ce qui peut être difficile à réaliser dans des applications réelles. L'objectif de cette thèse est de développer des SGE simples mais efficaces basées sur l'optimisation en temps réel pour un VE et un camion à traction hybride parallèle alimentés par des batteries et des SC (système de stockage hybride). Les complexités du système étudié sont réduites en utilisant la représentation macroscopique énergétique (REM). La REM permet de réaliser des modèles réduits pour la gestion de l'énergie au niveau de la supervision. La théorie du contrôle optimal est ensuite appliquée à ces modèles réduits pour réaliser des SGE en temps réel. Ces stratégies sont basées sur des réductions de modèle appropriées, mais elles sont systématiques et performantes. Les performances des SGE proposées sont vérifiées en simulation par comparaison avec l’optimum théorique (programmation dynamique). De plus, les capacités en temps réel des SGE développées sont validées via des expériences en « hardware-in-the-loop » à puissances réduites. Les résultats confirment les avantages des stratégies proposées développées par l'approche unifiée de la thèse.Abstract: Electric and hybrid vehicles are among the keys to solve the problems of global warming and exhausted fossil fuel resources in transportation sector. Due to the limits of energy sources and energy converters in terms of power and energy, hybridizations are of interest for future electrified vehicles. Two typical hybridizations are studied in this thesis: • hybrid energy storage subsystem combining batteries and supercapacitors (SCs); and • hybrid traction subsystem combining internal combustion engine and electric drive. Such combined energy sources and converters must be handled by energy management strategies (EMSs). In which, optimization-based methods are of interest due to their high performance. Nonetheless, these methods are often complicated and computation consuming which can be difficult to be realized in real-world applications. The objective of this thesis is to develop simple but effective real-time optimization-based EMSs for an electric car and a parallel hybrid truck supplied by batteries and SCs. The complexities of the studied system are tackled by using Energetic Macroscopic Representation (EMR) which helps to conduct reduced models for energy management at the supervisory level. Optimal control theory is then applied to these reduced models to accomplish real-time EMSs. These strategies are simple due to the suitable model reductions but systematic and high-performance due to the optimization-based methods. The performances of the proposed strategies are verified via simulations by comparing with off-line optimal benchmark deduced by dynamic programming. Moreover, real-time capabilities of these novel EMSs are validated via experiments by using reduced-scale power hardware-in-the-loop simulation. The results confirm the advantages of the proposed strategies developed by the unified approach in the thesis
    corecore