60 research outputs found

    Converted Measurement Trackers for Systems with Nonlinear Measurement Functions

    Get PDF
    Converted measurement tracking is a technique that filters in the coordinate system where the underlying process of interest is linear and Gaussian, and requires the measurements to be nonlinearly transformed to fit. The goal of the transformation is to allow for tracking in the coordinate system that is most natural for describing system dynamics. There are two potential issues that arise when performing converted measurement tracking. The first is conversion bias that occurs when the measurement transformation introduces a bias in the expected value of the converted measurement. The second is estimation bias that occurs because the estimate of the converted measurement error covariance is correlated with the measurement noise, leading to a biased Kalman gain. The goal of this research is to develop a new approach to converted measurement tracking that eliminates the conversion bias and mitigates the estimation bias. This new decorrelated unbiased converted measurement (DUCM) approach is developed and applied to numerous tracking problems applicable to sonar and radar systems. The resulting methods are compared to the current state of the art based on their mean square error (MSE) performance, consistency and performance with respect to the posterior Cramer-Rao lower bound

    Mission Planning Tool for space debris studies with the MeerKAT radar

    Get PDF
    The Radar Remote Sensing Group at the University of Cape Town is currently investigating the feasibility of building an active radar system employing the MeerKAT radio telescope as receiver for space debris detection, tracking and imaging. This dissertation details the development of a Mission Planning Tool (MPT) to perform sensor scheduling and to support the performance prediction and analysis of the proposed MeerKAT radar. The MeerKAT radar project proposal is made in the context of developing space surveillance and tracking capacities in South Africa. The MeerKAT radar is intended to operate bistatically, with a transmitter located in Bredasdorp (South Africa) and the MeerKAT radio telescope as receiver. The system design and radar signal processing design are currently under development in another RRSG project. Before the feasibility study can progress further, a Mission Planning Tool has been developed to assist in scheduling the bistatic radar to perform an observation experiment, to calculate the predicted radar measurements and errors as well as to estimate the orbit of the observed object. This report documents how these objectives were met by the MPT software developed in Python. Given a LEO space object of interest’s Two Line Element set, the MPT performs orbit propagation with an SGP4 method to generate trajectories for radar performance evaluation. The MPT determines the most opportune epoch (the longest possible target dwell-time within the antenna beam) for executing an observation experiment with the MeerKAT radar. Space objects investigated in this project were found to be have spent between 4.5 s to 12.8 s in the transmitter’s illuminating beam. The MeerKAT radio telescopes are tasked to act as receivers at the appropriate antenna pointing and time period. Based on the bistatic geometry of the specific observation experiment, the MPT predicts the signal-to-noise ratio at the radar receiver as well as the bistatic range, bistatic Doppler shift and look angles. The integrated SNR values for the experiments considered in this report ranged from 11 dB to 68 dB. From the coherently integrated SNR, the MPT estimates the radar measurement errors. Finally, the orbit determination module was engineered with two radar measurement schemes: a bistatic range and Doppler shift scheme and a bistatic range and look angles scheme. Monte Carlo experiments were run to evaluate the tracking performance resulting from the two tracking schemes. The Gauss-Newton tracking filter based on the first scheme fails to converge whereas it produces accurate results with the second scheme (estimated position error of 2 m and velocity error of 0.08 m/s). It is therefore recommended to opt for the bistatic range and look angles measurement scheme in future work. Since the current MeerKAT radar design cannot create look angles measurements, an observables estimation scheme was adopted. It was found that this scheme produced accurate elevation and azimuth angles with an estimation error of ±0.04◦ . Since the quoted values result from a preliminary design of the MeerKAT radar, they are bound to change in the final design. Therefore the MPT should be loaded with the final radar design’s parameters and run again to produce useful results. This reports shows that, with the help of the Mission Planning Tool developed in this project, the proposed MeerKAT radar can be feasibly scheduled to observe and track space objects in the LEO regime based on a single target pass

    Improvement of detection and tracking techniques in multistatic passive radar systems. (Mejora de técnicas de detección y seguimiento en sistemas radar pasivos multiestáticos)

    Get PDF
    Esta tesis doctoral es el resultado de una intensa actividad investigadora centrada en los sensores radar pasivos para la mejora de las capacidades de detección y seguimiento en escenarios complejos con blancos terrestres y pequeños drones. El trabajo de investigación se ha llevado a cabo en el grupo de investigación coordinado por la Dra. María Pilar Jarabo Amores, dentro del marco diferentes proyectos: IDEPAR (“Improved DEtection techniques for PAssive Radars”), MASTERSAT (“MultichAnnel paSsive radar receiver exploiting TERrestrial and SATellite Illuminators”) y KRIPTON (“A Knowledge based appRoach to passIve radar detection using wideband sPace adapTive prOcessiNg”) financiados por el Ministerio de Economía y Competitividad de España; MAPIS (Multichannel passive ISAR imaging for military applications) y JAMPAR (“JAMmer-based PAssive Radar”), financiados por la Agencia Europea de Defensa (EDA) . El objetivo principal es la mejora de las técnicas de detección y seguimiento en radares pasivos con configuraciones biestáticas y multiestaticas. En el documento se desarrollan algoritmos para el aprovechamiento de señales procedentes de distintos iluminadores de oportunidad (transmisores DVB-T, satélites DVB-S y señales GPS). Las soluciones propuestas han sido integradas en el demostrador tecnológico IDEPAR, desarrollado y actualizado bajo los proyectos mencionados, y validadas en escenarios reales declarados de interés por potenciales usuarios finales (Direccion general de armamento y material, instituto nacional de tecnología aeroespacial y la armada española). Para el desarrollo y evaluación de cadenas de las cadenas de procesado, se plantean dos casos de estudio: blancos terrestres en escenarios semiurbanos edificios y pequeños blancos aéreos en escenarios rurales y costeros. Las principales contribuciones se pueden resumir en los siguientes puntos: • Diseño de técnicas de seguimiento 2D en el espacio de trabajo rango biestático-frecuencia Doppler: se desarrollan técnicas de seguimiento para los dos casos de estudio, localización de blancos terrestres y pequeños drones. Para es último se implementan técnicas capaces de seguir tanto el movimiento del dron como su firma Doppler, lo que permite implementar técnicas de clasificación de blancos. • Diseño de técnicas de seguimiento de blancos capaces de integrar información en el espacio 3D (rango, Doppler y acimut): se diseñan técnicas basadas en procesado en dos etapas, una primera con seguimiento en 2D para el filtrado de falsas alarmas y la segunda para el seguimiento en 3D y la conversión de coordenadas a un plano local cartesiano. Se comparan soluciones basadas en filtros de Kalman para sistemas tanto lineales como no lineales. • Diseño de cadenas de procesado para sistemas multiestáticos: la información estimada del blanco sobre múltiples geometrías biestáticas es utilizada para incremento de las capacidades de localización del blanco en el plano cartesiano local. Se presentan soluciones basadas en filtros de Kalman para sistemas no lineales explotando diferentes medidas biestáticas en el proceso de transformación de coordenadas, analizando las mejoras de precisión en la localización del blanco. • Diseño de etapas de procesado para radares pasivos basados en señales satelitales de las constelaciones GPS DVB-S. Se estudian las características de las señales satelitales identificando sus inconvenientes y proponiendo cadenas de procesado que permitan su utilización para la detección y seguimiento de blancos terrestres. • Estudio del uso de señales DVB-T multicanal con gaps de transmisión entre los diferentes canales en sistemas radares pasivos. Con ello se incrementa la resolución del sistema, y las capacidades de detección, seguimiento y localización. Se estudia el modelo de señal multicanal, sus efectos sobre el procesado coherente y se proponen cadenas de procesado para paliar los efectos adversos de este tipo de señales

    Localisation and tracking of people using distributed UWB sensors

    Get PDF
    In vielen Überwachungs- und Rettungsszenarien ist die Lokalisierung und Verfolgung von Personen in Innenräumen auf nichtkooperative Weise erforderlich. Für die Erkennung von Objekten durch Wände in kurzer bis mittlerer Entfernung, ist die Ultrabreitband (UWB) Radartechnologie aufgrund ihrer hohen zeitlichen Auflösung und Durchdringungsfähigkeit Erfolg versprechend. In dieser Arbeit wird ein Prozess vorgestellt, mit dem Personen in Innenräumen mittels UWB-Sensoren lokalisiert werden können. Er umfasst neben der Erfassung von Messdaten, Abstandschätzungen und dem Erkennen von Mehrfachzielen auch deren Ortung und Verfolgung. Aufgrund der schwachen Reflektion von Personen im Vergleich zum Rest der Umgebung, wird zur Personenerkennung zuerst eine Hintergrundsubtraktionsmethode verwendet. Danach wird eine konstante Falschalarmrate Methode zur Detektion und Abstandschätzung von Personen angewendet. Für Mehrfachziellokalisierung mit einem UWB-Sensor wird eine Assoziationsmethode entwickelt, um die Schätzungen des Zielabstandes den richtigen Zielen zuzuordnen. In Szenarien mit mehreren Zielen kann es vorkommen, dass ein näher zum Sensor positioniertes Ziel ein anderes abschattet. Ein Konzept für ein verteiltes UWB-Sensornetzwerk wird vorgestellt, in dem sich das Sichtfeld des Systems durch die Verwendung mehrerer Sensoren mit unterschiedlichen Blickfeldern erweitert lässt. Hierbei wurde ein Prototyp entwickelt, der durch Fusion von Sensordaten die Verfolgung von Mehrfachzielen in Echtzeit ermöglicht. Dabei spielen insbesondere auch Synchronisierungs- und Kooperationsaspekte eine entscheidende Rolle. Sensordaten können durch Zeitversatz und systematische Fehler gestört sein. Falschmessungen und Rauschen in den Messungen beeinflussen die Genauigkeit der Schätzergebnisse. Weitere Erkenntnisse über die Zielzustände können durch die Nutzung zeitlicher Informationen gewonnen werden. Ein Mehrfachzielverfolgungssystem wird auf der Grundlage des Wahrscheinlichkeitshypothesenfilters (Probability Hypothesis Density Filter) entwickelt, und die Unterschiede in der Systemleistung werden bezüglich der von den Sensoren ausgegebene Informationen, d.h. die Fusion von Ortungsinformationen und die Fusion von Abstandsinformationen, untersucht. Die Information, dass ein Ziel detektiert werden sollte, wenn es aufgrund von Abschattungen durch andere Ziele im Szenario nicht erkannt wurde, wird als dynamische Überdeckungswahrscheinlichkeit beschrieben. Die dynamische Überdeckungswahrscheinlichkeit wird in das Verfolgungssystem integriert, wodurch weniger Sensoren verwendet werden können, während gleichzeitig die Performanz des Schätzers in diesem Szenario verbessert wird. Bei der Methodenauswahl und -entwicklung wurde die Anforderung einer Echtzeitanwendung bei unbekannten Szenarien berücksichtigt. Jeder untersuchte Aspekt der Mehrpersonenlokalisierung wurde im Rahmen dieser Arbeit mit Hilfe von Simulationen und Messungen in einer realistischen Umgebung mit UWB Sensoren verifiziert.Indoor localisation and tracking of people in non-cooperative manner is important in many surveillance and rescue applications. Ultra wideband (UWB) radar technology is promising for through-wall detection of objects in short to medium distances due to its high temporal resolution and penetration capability. This thesis tackles the problem of localisation of people in indoor scenarios using UWB sensors. It follows the process from measurement acquisition, multiple target detection and range estimation to multiple target localisation and tracking. Due to the weak reflection of people compared to the rest of the environment, a background subtraction method is initially used for the detection of people. Subsequently, a constant false alarm rate method is applied for detection and range estimation of multiple persons. For multiple target localisation using a single UWB sensor, an association method is developed to assign target range estimates to the correct targets. In the presence of multiple targets it can happen that targets closer to the sensor induce shadowing over the environment hindering the detection of other targets. A concept for a distributed UWB sensor network is presented aiming at extending the field of view of the system by using several sensors with different fields of view. A real-time operational prototype has been developed taking into consideration sensor cooperation and synchronisation aspects, as well as fusion of the information provided by all sensors. Sensor data may be erroneous due to sensor bias and time offset. Incorrect measurements and measurement noise influence the accuracy of the estimation results. Additional insight of the targets states can be gained by exploiting temporal information. A multiple person tracking framework is developed based on the probability hypothesis density filter, and the differences in system performance are highlighted with respect to the information provided by the sensors i.e. location information fusion vs range information fusion. The information that a target should have been detected when it is not due to shadowing induced by other targets is described as dynamic occlusion probability. The dynamic occlusion probability is incorporated into the tracking framework, allowing fewer sensors to be used while improving the tracker performance in the scenario. The method selection and development has taken into consideration real-time application requirements for unknown scenarios at every step. Each investigated aspect of multiple person localization within the scope of this thesis has been verified using simulations and measurements in a realistic environment using M-sequence UWB sensors

    Integrated perception, modeling, and control paradigm for bistatic sonar tracking by autonomous underwater vehicles

    Get PDF
    Thesis (Sc. D.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2012.Cataloged from PDF version of thesis.Includes bibliographical references (p. 357-364).In this thesis, a fully autonomous and persistent bistatic anti-submarine warfare (ASW) surveillance solution is developed using the autonomous underwater vehicles (AUVs). The passive receivers are carried by these AUVs, and are physically separated from the cooperative active sources. These sources are assumed to be transmitting both the frequency-modulated (FM) and continuous wave (CW) sonar pulse signals. The thesis then focuses on providing novel methods for the AUVs/receivers to enhance the bistatic sonar tracking performance. Firstly, the surveillance procedure, called the Automated Perception, is developed to automatically abstract the sensed acoustical data from the passive receiver to the track report that represents the situation awareness. The procedure is executed sequentially by two algorithms: (i) the Sonar Signal Processing algorithm - built with a new dual-waveform fusion of the FM and CW signals to achieve reliable stream of contacts for improved tracking; and (ii) the Target Tracking algorithm - implemented by exploiting information and environmental adaptations to optimize tracking performance. Next, a vehicular control strategy, called the Perception-Driven Control, is devised to move the AUV in reaction to the track report provided by the Automated Perception. The thesis develops a new non-myopic and adaptive control for the vehicle. This is achieved by exploiting the predictive information and environmental rewards to optimize the future tracking performance. The formulation eventually leads to a new information-theoretic and environmental-based control. The main challenge of the surveillance solution then rests upon formulating a model that allows tracking performance to be enhanced via adaptive processing in the Automated Perception, and adaptive mobility by the Perception-Driven Control. A Unified Model is formulated in this thesis that amalgamates two models: (i) the Information-Theoretic Model - developed to define the manner at which the FM and CW acoustical, the navigational, and the environmental measurement uncertainties are propagated to the bistatic measurement uncertainties in the contacts; and (ii) the Environmental-Acoustic Model - built to predict the signal-to-noise power ratios (SNRs) of the FM and CW contacts. Explicit relationships are derived in this thesis using information theory to amalgamate these two models. Finally, an Integrated System is developed onboard each AUV that brings together all the above technologies to enhance the bistatic sonar tracking performance. The system is formulated as a closed-loop control system. This formulation provides a new Integrated Perception, Modeling, and Control Paradigm for an autonomous bistatic ASW surveillance solution using AUVs. The system is validated using the simulated data, and the real data collected from the Generic Littoral Interoperable Network Technology (GLINT) 2009 and 2010 experiments. The experiments were conducted jointly with the NATO Undersea Research Centre (NURC).by Raymond Hon Kit Lum.Sc.D

    Robust Positioning in the Presence of Multipath and NLOS GNSS Signals

    Get PDF
    GNSS signals can be blocked and reflected by nearby objects, such as buildings, walls, and vehicles. They can also be reflected by the ground and by water. These effects are the dominant source of GNSS positioning errors in dense urban environments, though they can have an impact almost anywhere. Non- line-of-sight (NLOS) reception occurs when the direct path from the transmitter to the receiver is blocked and signals are received only via a reflected path. Multipath interference occurs, as the name suggests, when a signal is received via multiple paths. This can be via the direct path and one or more reflected paths, or it can be via multiple reflected paths. As their error characteristics are different, NLOS and multipath interference typically require different mitigation techniques, though some techniques are applicable to both. Antenna design and advanced receiver signal processing techniques can substantially reduce multipath errors. Unless an antenna array is used, NLOS reception has to be detected using the receiver's ranging and carrier-power-to-noise-density ratio (C/N0) measurements and mitigated within the positioning algorithm. Some NLOS mitigation techniques can also be used to combat severe multipath interference. Multipath interference, but not NLOS reception, can also be mitigated by comparing or combining code and carrier measurements, comparing ranging and C/N0 measurements from signals on different frequencies, and analyzing the time evolution of the ranging and C/N0 measurements

    New on-board multipurpose architecture integrating modern estimation techniques for generalized GNSS based autonomous orbit navigation

    Get PDF
    This dissertation investigates a novel Multipurpose Earth Orbit Navigation System (MEONS) architecture aiming at providing a generalized GNSS based spacecraft orbit estimation kernel matching the modern navigation instance of enhanced flexibility with respect to multiple Space Service Volume (SSV) applications (Precise Orbit Determination for Earth Observation satellite, Low Thrust Low to High Autonomous Orbit Rising, formation flying relative navigation, Small Satellite Autonomous Orbit Acquisition). The possibility to address theoretical and operational solutions within a unified framework is a foundamental step for the implementation of a reusable and configurable high performance navigation capability on next generation platforms

    Frequency estimation for single-carrier and OFDM signals in communication and radar systems

    Get PDF
    Eine der klassischen Problemstellungen in der Signalverarbeitung ist die Schaetzung der Frequenz eines Signals, das von weissem Rauschen additiv ueberlagert ist. Diese bedeutende Aufgabe stellt sich in vielen verschiedenen Anwendungsbereichen wie der Kommunikationstechnik, beim Doppler-Radar, beim Radar mit synthetischer Apertur (SAR), beim Array Processing, bei Radio-Frequency-IDentification (RFID), bei Resonanz-Sensoren usw. Die Anforderungen bezueglich der Leistungsfaehigkeit des Frequenzschaetzers haengen von der Anwendung ab. Die Leistungsfaehigkeit ist dabei oft unter Beruecksichtigung der folgenden 4 Punkte definiert: i) Genauigkeit, Richtigkeit der Schaetzung, ii) Arbeitsbereich (estimation range), iii) Grenzwerte der Schaetzung (im Vergleich zu einer theoretisch moeglichen Schwelle) und iv) Komplexitaet der Implementierung. Diese Anforderungen koennen nicht unabhaengig voneinander betrachtet werden und stehen sich teilweise gegenueber. Beispielsweise erfordert die Erzielung von Ergebnissen nahe an der theoretisch moeglichen Schwelle eine hohe Komplexitaet. Ebenso kann ein Schaetz-ergebnis von hoher Genauigkeit oftmals nur fuer einen stark eingeschraenkten Arbeitsbereich erzielt werden. Die Frequenzschaetzung ist im Falle von durch Fading hervorgerufenem multiplikativem Rauschen noch herausfordernder. Es handelt sich dann um den allgemeinen Fall der Frequenzschaetzung. Bisher hat man bereits viel Arbeit in die Ableitung eines Schaetzers für diesen allgemeinen Fall investiert. Ein Schaetzer, der optimal bezueglich aller oben genannten Kriterien ist, duerfte allerdings nur schwer zu finden sein. In dieser Dissertation wird mit Blick auf Kommunikationstechnik und Radaranwendungen ein verallgemeinerter, in geschlossener Form vorliegender, Frequenzschaetzer eingefuehrt, der alle genannten Kriterien der Leistungs-faehigkeit beruecksichtigt. Die Herleitung des Schaetzers beruht auf dem Prinzip der kleinsten Fehlerquadrate fuer den nichtlinearen Fall in Verbindung mit der Abelschen partiellen Summation. Zudem werden verschiedene modifizierte Frequenzschaetzer vorgestellt, die sich fuer Faelle in denen kein Fading oder nur sehr geringes Fading auftritt, eignen.Estimating the frequency of a signal embedded in additive white Gaussian noise is one of the classical problems in signal processing. It is of fundamental importance in various applications such as in communications, Doppler radar, synthetic aperture radar (SAR), array processing, radio frequency identification (RFID), resonance sensor, etc. The requirement on the performance of the frequency estimator varies with the application. The performance is often defined using four indexes: i). estimation accuracy, ii). estimation range, iii). estimation threshold, and iv). implementation complexity. These indexes may be in contrast with each other. For example, achieving a low threshold usually implies a high complexity. Likewise, good estimation accuracy is often obtained at the price of a narrow estimation range. The estimation becomes even more difficult in the presence of fading-induced multiplicative noise which is considered to be the general case of the frequency estimation problem. There have been a lot of efforts in deriving the estimator for the general case, however, a generalized estimator that fulfills all indexes can be hardly obtained. Focusing on communications and radar applications, this thesis proposes a new generalized closed-form frequency estimator that compromises all performance indexes. The derivation of the proposed estimator relies on the nonlinear least-squares principle in conjunction with the well known summation-by-parts formula. In addition to this, several modified frequency estimators suitable for non-fading or very slow fading scenarios, are also introduced in this thesis
    corecore