206 research outputs found

    Tools for BIM-GIS integration (IFC georeferencing and conversions): Results from the GeoBIM benchmark 2019

    Get PDF
    The integration of 3D city models with Building Information Models (BIM), coined as GeoBIM, facilitates improved data support to several applications, e.g., 3D map updates, building permits issuing, detailed city analysis, infrastructure design, context-based building design, to name a few. To solve the integration, several issues need to be tackled and solved, i.e., harmonization of features, interoperability, format conversions, integration of procedures. The GeoBIM benchmark 2019, funded by ISPRS and EuroSDR, evaluated the state of implementation of tools addressing some of those issues. In particular, in the part of the benchmark described in this paper, the application of georeferencing to Industry Foundation Classes (IFC) models and making consistent conversions between 3D city models and BIM are investigated, considering the OGC CityGML and buildingSMART IFC as reference standards. In the benchmark, sample datasets in the two reference standards were provided. External volunteers were asked to describe and test georeferencing procedures for IFC models and conversion tools between CityGML and IFC. From the analysis of the delivered answers and processed datasets, it was possible to notice that while there are tools and procedures available to support georeferencing and data conversion, comprehensive definition of the requirements, clear rules to perform such two tasks, as well as solid technological solutions implementing them, are still lacking in functionalities. Those specific issues can be a sensible starting point for planning the next GeoBIM integration agendas

    A semantic graph database for the interoperability of 3D GIS data

    Get PDF
    none6siIn the last decades, the use of information management systems in the building data processing led to radical changes to the methods of data production, documentation and archiving. In particular, the possibilities, given by these information systems, to visualize the 3D model and to formulate queries have placed the question of the information sharing in digital format. The integration of information systems represents an efficient solution for defining smart, sustainable and resilient projects, such as conservation and restoration processes, giving the possibilities to combine heterogeneous data. GIS provides a robust data storage system, a definition of topological and semantic relationships and spatial queries. 3D GIS makes possible the creation of three-dimensional model in a geospatial context. To promote the interoperability of GIS data, the present research aims first to analyse methods of conversion in CityGML and IndoorGML model, defining an ontological domain. This has led to the creation of a new enriched model, based on connections among the different elements of the urban model in GIS environment, and to the possibility to formulate queries based on these relations. The second step consists in collecting all data translated into a specific format that fill a graph database in a semantic web environment, while maintaining those relationships. The semantic web technology represents an efficient tool of interoperability that leaves open the possibility to import BIM data in the same graph database and to join both GIS and BIM models. The outcome will offer substantial benefits during the entire project life cycle. This methodology can also be applied to cultural heritage where the information management plays a key role.openMalinverni E.S.; Naticchia B.; Lerma Garcia J.L.; Gorreja A.; Lopez Uriarte J.; Di Stefano F.Malinverni, E. S.; Naticchia, B.; Lerma Garcia, J. L.; Gorreja, A.; Lopez Uriarte, J.; Di Stefano, F

    From Building Information Modeling to City Information Modeling

    Get PDF
    With the development of Geographic Information System (GIS), the concept of digital city is implemented widely. However, in practice, most of the GIS models are relatively poorly attributed, semantically. Building Information Modeling (BIM) is a process involving the generation and management of digital representations of physical and functional characteristics of building, which is most used in small scale projects. In order to address the target problem of completing the semantic attribution of 3D digital city model, a framework of integrating BIM technology into GIS is demonstrated. A new concept of city information modeling (CIM) is proposed with the goal of bringing great benefits to the urban construction and city management. The composition of city information model is discussed. The data schema behind BIM and GIS (i.e. IFC and CityGML) are compared and mapped with each other. A case study of land planning of campus is demonstrated to present the potential benefits of CIM

    MIGRATION OF DIGITAL CARTOGRAPHY TO CITYGML; A WEB-BASED TOOL FOR SUPPORTING SIMPLE ETL PROCEDURES

    Get PDF
    Abstract. Digital cartography is notably produced in all countries, in different scales and formats. Latest cartographic production aims at creating 3D objects with topological consistency and rich information linked by attribute tables, i.e. the principles behind data to be managed in geographic information systems (GIS) environments. These data contain all the information necessary for production of the first levels of detail (LOD) of the CityGML model. The work presented reports on the first steps for a guided workflow to upload cartographic data containing building footprints, heights and other information, and migrating it to a validated CityGML model. The steps include a web-portal for uploading the data in a compressed archive containing shapefiles, and a back-end Python script that reads coordinate vertices, attributes and other necessary information, and creates a CityGML file. The process was tested on the Italian topographic geodatabase of some of the main cities of Italy. Discussion on workflow steps and results are presented. Results show that this process is feasible and it can be used to facilitate first tests on transforming existing cartography to CityGML models, which can be then used for further analysis.</p

    GeoBIM Benchmark 2019: Intermediate results

    Get PDF
    An investigation into the implementation state of open standards in software is currently ongoing through the ISPRS/EuroSDR 'GeoBIM benchmark 2019' initiative, which kicked off earlier this year. The benchmark activity provides a way of assessing and comparing the functionality of different software packages in GIS and BIM in terms of their ability to handle standardised data (IFC and CityGML) and undertake various tasks using this data. Approximately 65 people have registered to participate so far, with participants from a wide range of backgrounds and proposing to test a variety of software packages. This confirms that the issues under investigation are of interest, and also meets the wider benchmark aim of having a variety of participants, since the project is conceived as using a bottom-up approach with cross-disciplinary and cross-expertise participation. While full benchmark results are not due to be submitted until later this year, interim results have highlighted a number of common issues across multiple software packages, and a web meeting for participants held in July 2019 also led to some improvements in how the benchmark results are being captured

    Model-based Planning for a Sustainable Urban Development

    Get PDF
    The objective of the presented project is the development of methodological and information-technical fundamentals for the realization of an integrated urban information management. The main focus is on demand-oriented development of an integrated multi-scale city model for the application context of the municipal energy efficiency, which convergently depicts all relevant objects with their semantic properties and their topologies for the representation of municipal transport and energy networks. The technical implementation of the model is effected by a prototypical model management platform with functionalities for rule-based semantic model analysis. The provision of standardized interfaces enables the integration, accompanying planning, of simulations and optimization processes

    Outdoor-Indoor tracking systems through geomatic techniques: data analysis for marketing and safety management

    Get PDF
    Negli ultimi decenni, l'utilizzo di sistemi di gestione delle informazioni nel trattamento dei dati edilizi ha portato a cambiamenti radicali nei metodi di produzione, documentazione e archiviazione dei dati. Dato il crescente interesse per i dati e la loro gestione, l'obiettivo di questa tesi è quello di creare un flusso di lavoro efficace e chiaro a partire dai rilievi geomatici in un'ottica di miglioramento dei dati raccolti sul territorio, sugli edifici circostanti e su quelli relativi al comportamento umano, in modo che possano essere meglio sfruttati e integrati in modelli di gestione intelligenti. Come primo passo, questa tesi mira a comprendere i limiti dell'interoperabilità e dell'integrazione dei dati nei GIS. Per promuovere l'interoperabilità dei dati GIS, è necessario analizzare i metodi di conversione nei diversi modelli di archiviazione dei dati, come CityGML e IndoorGML, definendo un dominio ontologico. Questo ha portato alla creazione di un nuovo modello arricchito, basato sulle connessioni tra i diversi elementi del modello urbano in GIS. Il secondo passo consiste nel raccogliere tutti i dati tradotti in un database a grafo sfruttando il web semantico. Il risultato offrirà vantaggi sostanziali durante l'intero ciclo di vita del progetto. Questa metodologia può essere applicata anche al patrimonio culturale, dove la gestione delle informazioni gioca un ruolo fondamentale. Un altro lavoro di ricerca è stato quello di sviluppare un sistema di gestione SMART per le attività di conservazione dei borghi storici attraverso la gestione di tipologie eterogenee di dati, dal rilievo alla documentazione tecnica. Il flusso di lavoro è stato strutturato come segue: (i) acquisizione dei dati; (ii) modellazione 3D; (iii) modellazione della conoscenza; (iv) modellazione della gestione SMART. Questa ricerca apre la strada allo sviluppo di una piattaforma web in cui importare i dati GIS per un approccio di digital twin. Tutte le ricerche svolte fino a questo punto sono state finalizzate a comprendere la capacità di creare modelli e sistemi informativi intelligenti per capire la fattibilità di ospitare dati eterogenei che potrebbero essere inclusi in futuro. Il passo successivo consiste nel comprendere il comportamento umano in uno spazio. Finora sono pochi i lavori di ricerca che si occupano di sistemi di mappatura e posizionamento che tengono conto sia degli spazi esterni che di quelli interni. Questo argomento, anche se ha pochi articoli di ricerca, rappresenta un aspetto cruciale per molte ragioni, soprattutto quando si tratta di gestire la sicurezza degli edifici danneggiati. Angelats e il suo gruppo di ricerca al CTTC hanno lavorato su questo aspetto, fornendo un sistema in grado di seguire in tempo reale le persone dall'esterno all'interno di spazi chiusi e viceversa. L'uso di sensori GNSS combinato con l'odometria inerziale visiva fornisce una traiettoria continua senza perdere il percorso seguito dall'utente monitorato. Una parte di questa tesi si è concentrata sul miglioramento della traiettoria finale ottenuta con il sistema appena descritto, effettuando test sulla traiettoria esterna del GNSS per capire il comportamento della traiettoria quando si avvicina agli edifici o quando l'utente si sposta in indoor. L'ultimo aspetto su cui si concentrerà la tesi è il tracciamento delle persone in ambienti chiusi. Il comportamento umano è al centro di numerosi studi in diversi campi, come quello scientifico, sociale ed economico. A differenza del precedente caso di studio sul tracciamento delle persone in aree esterne/interne, l'obiettivo è stato quello di raccogliere informazioni sul posizionamento dinamico delle persone in ambienti indoor, sulla base del segnale WiFi. Verrà effettuata una breve analisi dei dati per dimostrare il corretto funzionamento del sistema, per sottolineare l'importanza della conoscenza dei dati e l'uso che se ne può fare.In the last decades, the use of information management systems in the building data processing led to radical changes to the methods of data production, documentation and archiving. Given the ever-increasing interest in data and their management, the aim of this thesis is to create an effective and clear workflow starting from geomatic surveys in a perspective of improving the collected data on the territory, surrounding buildings and those related to human behaviour so they can be better exploited and integrated into smart management models As first step this thesis aims to understand the limits of data interoperability and integration in GIS filed. Before that, the data must be collected as raw data, then processed and interpret in order to obtain information. At the end of this first stage, when the information is well organized and can be well understanded and used it becomes knowledge. To promote the interoperability of GIS data, it is necessary at first to analyse methods of conversion in different data storage models such as CityGML and IndoorGML, defining an ontological domain. This has led to the creation of a new enriched model, based on connections among the different elements of the urban model in GIS environment, and to the possibility to formulate queries based on these relations. The second step consists in collecting all data translated into a specific format that fill a graph database in a semantic web environment, while maintaining those relationships. The outcome will offer substantial benefits during the entire project life cycle. This methodology can also be applied to cultural heritage where the information management plays a key role. Another research work, was to develop a SMART management system for preservation activities of historical villages through the management of heterogeneous types of data, from the survey to the technical documentation. The workflow was structured as follows: (i) Data acquisition; (ii) 3D modelling; (iii) Knowledge modelling; (iv) SMART management modelling. This research paves the way to develop a web platform where GIS data would be imported for a digital twin approach. All the research done up to this point was to understand the capability of creating smart information models and systems in order to understand the feasibility to host heterogeneous data that may be included in the future. The next step consist of understanding human behaviour in a space. So far only a few research papers are addressed towards mapping and positioning systems taking into account both outdoor and indoor spaces. This topic, even though it has few research articles, represents a crucial aspect for many reasons, especially when it comes to safety management of damaged building. Angelats and his research team at CTTC have been working on this aspect providing a system able to track in real time people from outdoor to indoor areas and vice-versa. The use of GNSS sensors combined with Visual Inertial Odometry provide a continuous trajectory without losing the path followed by the monitored user. A part of this thesis focused on enhancing the final trajectory obtained with the described system above, carrying out tests on the outdoor trajectory of GNSS in order to understand behaviour of the trajectory when it gets close to buildings or when the user moves indoor. The last aspect this thesis will focus on is the tracking of people indoor. Human behaviour is at the centre of several studies in different fields such as scientific subjects, social and economics. Differently from the previous case study of tracking people in outdoor/indoor areas, the scope was to collect information about the dynamic indoor positioning of people, based on the WiFi signal. A brief analysis of the data will be made to demonstrate the correct functioning of the system, to emphasise the importance of data knowledge and the use that can be made of it
    corecore