1,558 research outputs found

    Strong Converse for Identification via Quantum Channels

    Full text link
    In this paper we present a simple proof of the strong converse for identification via discrete memoryless quantum channels, based on a novel covering lemma. The new method is a generalization to quantum communication channels of Ahlswede's recently discovered appoach to classical channels. It involves a development of explicit large deviation estimates to the case of random variables taking values in selfadjoint operators on a Hilbert space. This theory is presented separately in an appendix, and we illustrate it by showing its application to quantum generalizations of classical hypergraph covering problems.Comment: 11 pages, LaTeX2e, requires IEEEtran2e.cls. Some errors and omissions corrected, references update

    Strong Converse and Second-Order Asymptotics of Channel Resolvability

    Full text link
    We study the problem of channel resolvability for fixed i.i.d. input distributions and discrete memoryless channels (DMCs), and derive the strong converse theorem for any DMCs that are not necessarily full rank. We also derive the optimal second-order rate under a condition. Furthermore, under the condition that a DMC has the unique capacity achieving input distribution, we derive the optimal second-order rate of channel resolvability for the worst input distribution.Comment: 7 pages, a shorter version will appear in ISIT 2014, this version includes the proofs of technical lemmas in appendice

    Quantum and Classical Message Identification via Quantum Channels

    Full text link
    We discuss concepts of message identification in the sense of Ahlswede and Dueck via general quantum channels, extending investigations for classical channels, initial work for classical-quantum (cq) channels and "quantum fingerprinting". We show that the identification capacity of a discrete memoryless quantum channel for classical information can be larger than that for transmission; this is in contrast to all previously considered models, where it turns out to equal the common randomness capacity (equals transmission capacity in our case): in particular, for a noiseless qubit, we show the identification capacity to be 2, while transmission and common randomness capacity are 1. Then we turn to a natural concept of identification of quantum messages (i.e. a notion of "fingerprint" for quantum states). This is much closer to quantum information transmission than its classical counterpart (for one thing, the code length grows only exponentially, compared to double exponentially for classical identification). Indeed, we show how the problem exhibits a nice connection to visible quantum coding. Astonishingly, for the noiseless qubit channel this capacity turns out to be 2: in other words, one can compress two qubits into one and this is optimal. In general however, we conjecture quantum identification capacity to be different from classical identification capacity.Comment: 18 pages, requires Rinton-P9x6.cls. On the occasion of Alexander Holevo's 60th birthday. Version 2 has a few theorems knocked off: Y Steinberg has pointed out a crucial error in my statements on simultaneous ID codes. They are all gone and replaced by a speculative remark. The central results of the paper are all unharmed. In v3: proof of Proposition 17 corrected, without change of its statemen

    Quantum broadcast channels

    Full text link
    We consider quantum channels with one sender and two receivers, used in several different ways for the simultaneous transmission of independent messages. We begin by extending the technique of superposition coding to quantum channels with a classical input to give a general achievable region. We also give outer bounds to the capacity regions for various special cases from the classical literature and prove that superposition coding is optimal for a class of channels. We then consider extensions of superposition coding for channels with a quantum input, where some of the messages transmitted are quantum instead of classical, in the sense that the parties establish bipartite or tripartite GHZ entanglement. We conclude by using state merging to give achievable rates for establishing bipartite entanglement between different pairs of parties with the assistance of free classical communication.Comment: 15 pages; IEEE Trans. Inform. Theory, vol. 57, no. 10, October 201

    Asymptotic Estimates in Information Theory with Non-Vanishing Error Probabilities

    Full text link
    This monograph presents a unified treatment of single- and multi-user problems in Shannon's information theory where we depart from the requirement that the error probability decays asymptotically in the blocklength. Instead, the error probabilities for various problems are bounded above by a non-vanishing constant and the spotlight is shone on achievable coding rates as functions of the growing blocklengths. This represents the study of asymptotic estimates with non-vanishing error probabilities. In Part I, after reviewing the fundamentals of information theory, we discuss Strassen's seminal result for binary hypothesis testing where the type-I error probability is non-vanishing and the rate of decay of the type-II error probability with growing number of independent observations is characterized. In Part II, we use this basic hypothesis testing result to develop second- and sometimes, even third-order asymptotic expansions for point-to-point communication. Finally in Part III, we consider network information theory problems for which the second-order asymptotics are known. These problems include some classes of channels with random state, the multiple-encoder distributed lossless source coding (Slepian-Wolf) problem and special cases of the Gaussian interference and multiple-access channels. Finally, we discuss avenues for further research.Comment: Further comments welcom

    Quantum Channels and Simultaneous ID Coding

    Get PDF
    This paper is on identification of classical information by the use of quantum channels. We focus on simultaneous ID codes which use measurements being useful to identify an arbitrary message. We give a direct and a converse part of the appropriate coding theorem.Comment: 15 page

    A Resource Framework for Quantum Shannon Theory

    Full text link
    Quantum Shannon theory is loosely defined as a collection of coding theorems, such as classical and quantum source compression, noisy channel coding theorems, entanglement distillation, etc., which characterize asymptotic properties of quantum and classical channels and states. In this paper we advocate a unified approach to an important class of problems in quantum Shannon theory, consisting of those that are bipartite, unidirectional and memoryless. We formalize two principles that have long been tacitly understood. First, we describe how the Church of the larger Hilbert space allows us to move flexibly between states, channels, ensembles and their purifications. Second, we introduce finite and asymptotic (quantum) information processing resources as the basic objects of quantum Shannon theory and recast the protocols used in direct coding theorems as inequalities between resources. We develop the rules of a resource calculus which allows us to manipulate and combine resource inequalities. This framework simplifies many coding theorem proofs and provides structural insights into the logical dependencies among coding theorems. We review the above-mentioned basic coding results and show how a subset of them can be unified into a family of related resource inequalities. Finally, we use this family to find optimal trade-off curves for all protocols involving one noisy quantum resource and two noiseless ones.Comment: 60 page
    corecore