218 research outputs found

    Commonsense Reasoning for Conversational AI: A Survey of the State of the Art

    Full text link
    Large, transformer-based pretrained language models like BERT, GPT, and T5 have demonstrated a deep understanding of contextual semantics and language syntax. Their success has enabled significant advances in conversational AI, including the development of open-dialogue systems capable of coherent, salient conversations which can answer questions, chat casually, and complete tasks. However, state-of-the-art models still struggle with tasks that involve higher levels of reasoning - including commonsense reasoning that humans find trivial. This paper presents a survey of recent conversational AI research focused on commonsense reasoning. The paper lists relevant training datasets and describes the primary approaches to include commonsense in conversational AI. The paper also discusses benchmarks used for evaluating commonsense in conversational AI problems. Finally, the paper presents preliminary observations of the limited commonsense capabilities of two state-of-the-art open dialogue models, BlenderBot3 and LaMDA, and its negative effect on natural interactions. These observations further motivate research on commonsense reasoning in conversational AI.Comment: Accepted to Workshop on Knowledge Augmented Methods for Natural Language Processing, in conjunction with AAAI 202

    Reliable Natural Language Understanding with Large Language Models and Answer Set Programming

    Full text link
    Humans understand language by extracting information (meaning) from sentences, combining it with existing commonsense knowledge, and then performing reasoning to draw conclusions. While large language models (LLMs) such as GPT-3 and ChatGPT are able to leverage patterns in the text to solve a variety of NLP tasks, they fall short in problems that require reasoning. They also cannot reliably explain the answers generated for a given question. In order to emulate humans better, we propose STAR, a framework that combines LLMs with Answer Set Programming (ASP). We show how LLMs can be used to effectively extract knowledge -- represented as predicates -- from language. Goal-directed ASP is then employed to reliably reason over this knowledge. We apply the STAR framework to three different NLU tasks requiring reasoning: qualitative reasoning, mathematical reasoning, and goal-directed conversation. Our experiments reveal that STAR is able to bridge the gap of reasoning in NLU tasks, leading to significant performance improvements, especially for smaller LLMs, i.e., LLMs with a smaller number of parameters. NLU applications developed using the STAR framework are also explainable: along with the predicates generated, a justification in the form of a proof tree can be produced for a given output.Comment: In Proceedings ICLP 2023, arXiv:2308.1489

    Is Neuro-Symbolic AI Meeting its Promise in Natural Language Processing? A Structured Review

    Full text link
    Advocates for Neuro-Symbolic Artificial Intelligence (NeSy) assert that combining deep learning with symbolic reasoning will lead to stronger AI than either paradigm on its own. As successful as deep learning has been, it is generally accepted that even our best deep learning systems are not very good at abstract reasoning. And since reasoning is inextricably linked to language, it makes intuitive sense that Natural Language Processing (NLP), would be a particularly well-suited candidate for NeSy. We conduct a structured review of studies implementing NeSy for NLP, with the aim of answering the question of whether NeSy is indeed meeting its promises: reasoning, out-of-distribution generalization, interpretability, learning and reasoning from small data, and transferability to new domains. We examine the impact of knowledge representation, such as rules and semantic networks, language structure and relational structure, and whether implicit or explicit reasoning contributes to higher promise scores. We find that systems where logic is compiled into the neural network lead to the most NeSy goals being satisfied, while other factors such as knowledge representation, or type of neural architecture do not exhibit a clear correlation with goals being met. We find many discrepancies in how reasoning is defined, specifically in relation to human level reasoning, which impact decisions about model architectures and drive conclusions which are not always consistent across studies. Hence we advocate for a more methodical approach to the application of theories of human reasoning as well as the development of appropriate benchmarks, which we hope can lead to a better understanding of progress in the field. We make our data and code available on github for further analysis.Comment: Surve

    ESC: Exploration with Soft Commonsense Constraints for Zero-shot Object Navigation

    Full text link
    The ability to accurately locate and navigate to a specific object is a crucial capability for embodied agents that operate in the real world and interact with objects to complete tasks. Such object navigation tasks usually require large-scale training in visual environments with labeled objects, which generalizes poorly to novel objects in unknown environments. In this work, we present a novel zero-shot object navigation method, Exploration with Soft Commonsense constraints (ESC), that transfers commonsense knowledge in pre-trained models to open-world object navigation without any navigation experience nor any other training on the visual environments. First, ESC leverages a pre-trained vision and language model for open-world prompt-based grounding and a pre-trained commonsense language model for room and object reasoning. Then ESC converts commonsense knowledge into navigation actions by modeling it as soft logic predicates for efficient exploration. Extensive experiments on MP3D, HM3D, and RoboTHOR benchmarks show that our ESC method improves significantly over baselines, and achieves new state-of-the-art results for zero-shot object navigation (e.g., 158% relative Success Rate improvement than CoW on MP3D)

    Neuro Symbolic Reasoning for Planning: Counterexample Guided Inductive Synthesis using Large Language Models and Satisfiability Solving

    Full text link
    Generative large language models (LLMs) with instruct training such as GPT-4 can follow human-provided instruction prompts and generate human-like responses to these prompts. Apart from natural language responses, they have also been found to be effective at generating formal artifacts such as code, plans, and logical specifications from natural language prompts. Despite their remarkably improved accuracy, these models are still known to produce factually incorrect or contextually inappropriate results despite their syntactic coherence - a phenomenon often referred to as hallucination. This limitation makes it difficult to use these models to synthesize formal artifacts that are used in safety-critical applications. Unlike tasks such as text summarization and question-answering, bugs in code, plan, and other formal artifacts produced by LLMs can be catastrophic. We posit that we can use the satisfiability modulo theory (SMT) solvers as deductive reasoning engines to analyze the generated solutions from the LLMs, produce counterexamples when the solutions are incorrect, and provide that feedback to the LLMs exploiting the dialog capability of instruct-trained LLMs. This interaction between inductive LLMs and deductive SMT solvers can iteratively steer the LLM to generate the correct response. In our experiments, we use planning over the domain of blocks as our synthesis task for evaluating our approach. We use GPT-4, GPT3.5 Turbo, Davinci, Curie, Babbage, and Ada as the LLMs and Z3 as the SMT solver. Our method allows the user to communicate the planning problem in natural language; even the formulation of queries to SMT solvers is automatically generated from natural language. Thus, the proposed technique can enable non-expert users to describe their problems in natural language, and the combination of LLMs and SMT solvers can produce provably correct solutions.Comment: 25 pages, 7 figure
    • …
    corecore