84 research outputs found

    Algorithm 950: Ncpol2sdpa---Sparse Semidefinite Programming Relaxations for Polynomial Optimization Problems of Noncommuting Variables

    Full text link
    A hierarchy of semidefinite programming (SDP) relaxations approximates the global optimum of polynomial optimization problems of noncommuting variables. Generating the relaxation, however, is a computationally demanding task, and only problems of commuting variables have efficient generators. We develop an implementation for problems of noncommuting problems that creates the relaxation to be solved by SDPA -- a high-performance solver that runs in a distributed environment. We further exploit the inherent sparsity of optimization problems in quantum physics to reduce the complexity of the resulting relaxations. Constrained problems with a relaxation of order two may contain up to a hundred variables. The implementation is available in Python. The tool helps solve problems such as finding the ground state energy or testing quantum correlations.Comment: 17 pages, 3 figures, 1 table, 2 algorithms, the algorithm is available at http://peterwittek.github.io/ncpol2sdpa

    Characterizing finite-dimensional quantum behavior

    Get PDF
    We study and extend the semidefinite programming (SDP) hierarchies introduced in [Phys. Rev. Lett. 115, 020501] for the characterization of the statistical correlations arising from finite dimensional quantum systems. First, we introduce the dimension-constrained noncommutative polynomial optimization (NPO) paradigm, where a number of polynomial inequalities are defined and optimization is conducted over all feasible operator representations of bounded dimensionality. Important problems in device independent and semi-device independent quantum information science can be formulated (or almost formulated) in this framework. We present effective SDP hierarchies to attack the general dimension-constrained NPO problem (and related ones) and prove their asymptotic convergence. To illustrate the power of these relaxations, we use them to derive new dimension witnesses for temporal and Bell-type correlation scenarios, and also to bound the probability of success of quantum random access codes.Comment: 17 page

    ON THE COMPLEXITY OF SEMIDEFINITE PROGRAMS ARISING IN POLYNOMIAL OPTIMIZATION

    Get PDF
    In this paper we investigate matrix inequalities which hold irrespective of the size of the matrices involved, and explain how the search for such inequalities can be implemented as a semidefinite program (SDP). We provide a comprehensive discussion of the time complexity of these SDPs

    Matrix Convex Hulls of Free Semialgebraic Sets

    Full text link
    This article resides in the realm of the noncommutative (free) analog of real algebraic geometry - the study of polynomial inequalities and equations over the real numbers - with a focus on matrix convex sets CC and their projections C^\hat C. A free semialgebraic set which is convex as well as bounded and open can be represented as the solution set of a Linear Matrix Inequality (LMI), a result which suggests that convex free semialgebraic sets are rare. Further, Tarski's transfer principle fails in the free setting: The projection of a free convex semialgebraic set need not be free semialgebraic. Both of these results, and the importance of convex approximations in the optimization community, provide impetus and motivation for the study of the free (matrix) convex hull of free semialgebraic sets. This article presents the construction of a sequence C(d)C^{(d)} of LMI domains in increasingly many variables whose projections C^(d)\hat C^{(d)} are successively finer outer approximations of the matrix convex hull of a free semialgebraic set Dp={X:p(X)0}D_p=\{X: p(X)\succeq0\}. It is based on free analogs of moments and Hankel matrices. Such an approximation scheme is possibly the best that can be done in general. Indeed, natural noncommutative transcriptions of formulas for certain well known classical (commutative) convex hulls does not produce the convex hulls in the free case. This failure is illustrated on one of the simplest free nonconvex DpD_p. A basic question is which free sets S^\hat S are the projection of a free semialgebraic set SS? Techniques and results of this paper bear upon this question which is open even for convex sets.Comment: 41 pages; includes table of contents; supplementary material (a Mathematica notebook) can be found at http://www.math.auckland.ac.nz/~igorklep/publ.htm

    The convex Positivstellensatz in a free algebra

    Get PDF
    Given a monic linear pencil L in g variables let D_L be its positivity domain, i.e., the set of all g-tuples X of symmetric matrices of all sizes making L(X) positive semidefinite. Because L is a monic linear pencil, D_L is convex with interior, and conversely it is known that convex bounded noncommutative semialgebraic sets with interior are all of the form D_L. The main result of this paper establishes a perfect noncommutative Nichtnegativstellensatz on a convex semialgebraic set. Namely, a noncommutative polynomial p is positive semidefinite on D_L if and only if it has a weighted sum of squares representation with optimal degree bounds: p = s^* s + \sum_j f_j^* L f_j, where s, f_j are vectors of noncommutative polynomials of degree no greater than 1/2 deg(p). This noncommutative result contrasts sharply with the commutative setting, where there is no control on the degrees of s, f_j and assuming only p nonnegative, as opposed to p strictly positive, yields a clean Positivstellensatz so seldom that such cases are noteworthy.Comment: 22 page
    corecore